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Message from the MMTC Chair

Dear MMTC friends and colleagues: 

 

It is my pleasure to provide a message for the July issue of MMTC Communications-Frontiers. I joined the service 

for MMTC from 2010. Within the past few years, I have been witnessing the development and growth of MMTC. I 

am very proud of having been serving in MMTC and deeply enjoy working with MMTC team members for these 

years.  I would like to take this opportunity to express my sincere appreciation to MMTC friends and colleagues! 

Without your participation and support, MMTC cannot have such a success. 

 

MMTC has fourteen interesting groups (IGs) focusing on different topics in the area of multimedia communications. 

In addition, MMTC has six boards in charge of award, publication, review, membership, publicity, and advisor, 

respectively.  The number of MMTC members is already above 1000. With the efforts from these IGs and boards, 

MMTC provides very efficient channels to share, exchange, and discuss information and enhance the visibility of its 

members.  

 

MMTC will hold TC meeting several times each year during the period of some main conferences such as ICC, 

GLOBECOM, ICME, etc. The next TC meeting will be hold at ICME 2017 at Hong Kong on July 13, 2017. All are 

welcome to join this meeting.  

 

If you want to join the MMTC, please visit our Membership Board page at 

http://committees.comsoc.org/mmc/membership.asp.  I have no doubt that you will benefit from being a member of 

MMTC.  Finally, MMTC Communications Frontiers provides the readers the timely update on the start-of-the-art 

development and hot research topics. I hope you will enjoy reading this issue of MMTC Communications Frontiers!  

 

 

Sincerely yours, 

 

 
 

Fen Hou 

Vice Chair for Asia 

Multimedia Communications Technical Committee 

IEEE Communications Society    

 

  

http://committees.comsoc.org/mmc/membership.asp
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SPECIAL ISSUE ON Recent Activities in Mobile Edge Computing and Edge 

Caching 

Guest Editor: Melike Erol-Kantarci, University of Ottawa, Canada  

{melike.erolkantarci}@uottawa.ca  

 

The rapid increase in powerful mobile devices along with the demand for rich multimedia applications has 

escalated the need for efficient computing and caching techniques more than ever. Adding to this, low-latency 

demand of many Internet of Things (IoT) applications and mobile Augmented Reality and Virtual Reality (AR/VR) 

leads the mobile network system operators to position themselves more than just communication facilitators but 

also facilitators of computing and caching closer to the users. On the other hand, device-to-device communications 

expand the boundaries of computing and caching from the operator equipment to user devices and even cars. 

Caching of popular contents at the network edge can significantly improve latency performance while mobile edge 

computing (MEC) or fog computing makes it convenient to access shared pool of services and resources that are 

location independent. Therefore, MEC and edge caching are important components of the research in 5G and 

beyond networks. This is discussed in detail in our recent paper “Caching and Computing at the Edge for Mobile 

Augmented Reality and Virtual Reality in 5G,” to be published in ADHOCNETS 2017. 

The five papers included in this special issue on “Recent Activities in Mobile Edge Computing and Edge Caching” 

aim to provide points of views of renowned researchers in this field and to provide the readers cutting-edge results 

from their groups. The included papers are briefly introduced below. 

X. Sun and N. Ansari, in their research “Cloudlet Networks: Empowering Mobile Networks with Computing 

Capabilities” propose a cloudlet architecture that aims to address three important questions: i) How does MEC 

incentivize mobile users to upload mobile data to edge computing entities? ii) How does MEC leverage and 

coordinate the highly distributed edge computing entities at the network edge to analyze the data streams from 

mobile users? iii) How do mobile users associate with different edge computing entities when the mobile users roam 

over the network? The authors tackle the virtual machine placement problem in mobile edge computing and propose 

a delay-aware optimization-based solution. 

The paper entitled, “A Dynamic Task Scheduler for Computation Offloading in Mobile Cloud Computing Systems,” 

by H. Shah-Mansouri, V. W.S. Wong, and R. Schober introduce an efficient task scheduler using an optimization 

framework that takes the energy consumption and delay into account. A task scheduler dynamically makes an 

offloading decision upon arrival of a task. Therefore the task scheduler has a fundamental role in exploiting the 

advantages of mobile cloud computing systems. The proposed scheduler is shown to arrive at the optimal offloading 

decision while maximizing the utility obtained by using the cloud computing services. 

In “Online Optimization Techniques for Effective Fog Computing under Uncertainty,” authored by G. Lee, W. Saad, 

and M. Bennis, the problem of operating in a dynamic environment is addressed. In mobile cloud computing, fog 

nodes can dynamically join and leave a network. Therefore the full information on the location and the future 

availability of different fog nodes might not be available at all times. However, most of the studies in the literature 

propose optimization-based approaches with an assumption of all the information being available. In their paper, the 

authors propose, using online optimization, to capture the dynamically varying and largely uncertain environment of 

fog networks. The paper introduces use cases for online optimization, as well as discussing its use jointly in caching 

and fog computing. 

In “Human-enabled Edge Computing: When Mobile Crowd-Sensing meets Mobile Edge Computing,” the authors L. 

Foschini and M. Girolami report on recent their findings on Human-driven Edge Computing (HEC). HEC relies on 

continuously monitoring humans and their mobility patterns to dynamically re-identify hot locations and to use a 

human-in-the-loop approach. The proposed approach leverages human sociality and mobility to broaden the 

coverage of the fixed mobile edge computing architectures.  

The research in “Mobile Edge Computing: Recent Efforts and Five Key Research Directions,” by T. X. Tran, M.-P. 

Hosseini, and D. Pompili presents the recent state-of-the-art in mobile edge computing. The authors begin by 

introducing proofs of concepts and standardization efforts. Then they discuss the research on computation offloading 

as well as edge caching. Finally, they outline future research directions as a valuable guideline for the researchers 

who are interested in the area. 
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The purpose of this special issue is to introduce several state-of-the-art research efforts in mobile edge computing 

and edge caching rather than giving a complete coverage of the area. The contributions of the widely recognized 

researchers make the special issue a valuable source for the readers. The guest editor is thankful for all the authors 

for their valuable contributions and the help from the MMTC Communications – Frontiers Board. 

 

Melike Erol-Kantarci is an assistant professor at the School of Electrical Engineering and 
Computer Science at the University of Ottawa, ON, Canada. She is the founding director of the 
Networked Systems and Communications Research (NETCORE) laboratory. She is also a 
courtesy assistant professor at the Department of Electrical and Computer Engineering at Clarkson 
University, Potsdam, NY, where she was a tenure-track assistant professor prior to joining 
University of Ottawa. She received her Ph.D. and M.Sc. degrees in Computer Engineering from 
Istanbul Technical University in 2009 and 2004, respectively. During her Ph.D. studies, she was a 
Fulbright visiting researcher at the Computer Science Department of the University of California 

Los Angeles (UCLA). She is an editor of the IEEE Communications Letters and IEEE Access. She is the co-editor 
of the book “Smart Grid: Networking, Data Management, and Business Models”. Her articles are continuously 
among the top cited and top accessed papers on IEEE and Elsevier databases. She has acted as general chair or 
technical program chair for many international conferences and workshops. She is a senior member of the IEEE and 
the past vice-chair for Women in Engineering (WIE) at the IEEE Ottawa Section.  She is currently the vice-chair of 
Green Smart Grid Communications special interest group of IEEE Technical Committee on Green Communications 
and Computing. She is also the research group leader for IEEE Smart Grid and Big Data Standardization. Her main 
research interests are 5G and beyond wireless networks, smart grid, cyber-physical systems, electric vehicles, 
Internet of things and wireless sensor networks.  
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Cloudlet Networks: Empowering Mobile Networks with Computing Capabilities 

Xiang Sun and Nirwan Ansari 

Advanced Networking Laboratory 

Helen and John C. Hartmann Department of Electrical & Computer Engineering 

New Jersey Institute of Technology, Newark, NJ 07102, USA 

{xs47, nirwan.ansari}@njit.edu 

1. Introduction 

Mobile devices are currently embedded with various sensors to sense the environment over time. Analyzing these 

sensed data can substantially transform how we do business and conduct our lives. For instance, analyzing the data 

generated by on-body sensors can enable early detection of unusual activities or abnormalities, thus improving our 

health [1]; analyzing the photos/videos captured by mobile users can detect and track terrorists to safeguard the 

whole society. Traditionally, these mobile data would be uploaded to a remote data center, which has been 

demonstrated to provision resources flexibly and efficiently, for further processing [2]. However, this would burden 

the network to conduct data aggregation from mobile users to the remote data center, thus significantly increasing 

the response time of generating high-level knowledge (or providing services) by analyzing the mobile data. The 

response time (of generating high-level knowledge) is very important for mobile data analytics [3]-[5], e.g., 

identifying the terrorists and obtaining their locations along with related timestamps (by analyzing the photos/videos 

from users) in a timely fashion is very critical in deterring terrorism. 

 

Mobile Edge Computing (MEC) has been proposed to enable computing entities (e.g., cloudlets and fog nodes) to 

process mobile data streams at the network edge [6], [7]. This can tremendously reduce the time for uploading the 

mobile data from mobile users to the computing entities, thus potentially reducing the response time accordingly. 

However, the MEC concept is still in the phase of proof of concept and many issues need to be addressed: 

 Issue-1: How does MEC incentivize mobile users to upload mobile data to edge computing entities? 

Mobile users would like to share their original data to applications in order to receive the corresponding 

services, which are provided by the applications. However, sharing original data may provide personal 

information of mobile users to the application providers. This may discourage mobile users from uploading 

mobile data. For instance, the terrorist detection application is to identify and track terrorists by comparing the 

photos of the terrorists with the ones captured by mobile users. Thus, mobile users need to upload their photos 

(which contain the personal information of mobile users) to the terrorist detection application, which can be 

placed at the edge computing entities. Therefore, it is beneficial to design a data sharing mechanism tailored for 

MEC such that mobile users can obtain services provided by the applications while preserving privacy of 

mobile users. 

 Issue-2: How does MEC leverage and coordinate the highly distributed edge computing entities at the network 

edge to analyze the data streams from mobile users? 

Edge computing entities may be highly distributed in the mobile network. Each edge computing entity provides 

computing resources to process data streams from its local mobile users. Different edge computing entities may 

need to coordinate with each other in order to provide services to mobile users with low delay. For instance, the 

terrorist detection application may need to collect and analyze the photos/videos captured by different mobile 

users in a large area, which includes a number of distributed edge computing entities. Transmitting all the 

photos/videos (captured by the different mobile users) to the terrorist detection application (which is located in a 

specific edge computing entity) may not provide a low response time in identifying the terrorists because of the 

high network delay for transmitting high volume data (i.e., photos/videos) to the terrorist detection application 

(in a specific edge computing entity). Thus, we need to design a distributed computing architecture tailored for 

MEC such that different edge computing entities can coordinate with each other to reduce the response time. 

 Issue-3: How do mobile users associate with different edge computing entities when the mobile users roam over 

the network? 

In order to minimize the delay between a mobile user and an edge computing entity as well as the traffic in the 

core network, a mobile user may associate with the closest edge computing entity. That is, a mobile user may 
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need to change its associated edge computing entity to process its mobile data when the mobile user roams from 

one area into another. However, associating mobile users with their closest edge computing entities may result 

in insufficient resource provisioning of edge computing entities (i.e., some edge computing entities do not have 

enough resources to process the data streams from their local mobile users). Meanwhile, changing associated 

edge computing entity incurs extra computing and communications overheads. Therefore, designing an efficient 

edge computing entity association strategy is critical to speed up mobile data processing. 

 

In this paper, we introduce a cloudlet network to address these three issues. The rest of the paper is organized as 

follows. In Sec. 2, we introduce the cloudlet network architecture to resolve Issue-1 and Issue-2. In Sec. 3, in order 

to resolve Issue-3, we propose to associate mobile users with different edge computing entities by migrating mobile 

users’ Avatars (i.e., Virtual Machines (VMs)) among edge computing entities based on mobile users’ locations. We 

formulate the Avatar placement problem and demonstrate its performance via simulations. 

 

2. The Cloudlet Network Architecture 

Cloud

Internet

SDN  Controller 

API

QoS Controller

User database AAA server

Mobility Management

Network management 

operator
 ...

 ...

Fog node

OpenFlow 

Access Switch
OpenFlow Core 

Switch

Multi-interface 

Base station

Control link Data link

SDN based Cellular 

Core (data plane)

SDN based Cellular 

Core (control plane)

 
Figure. 1: The cloudlet network architecture (cf. Fig. 3 in [7]). 

 

The cloudlet network architecture, as shown in Figure 1, comprises three parts, i.e., distributed cloudlets in the 

mobile network, hierarchical structure of a cloudlet, and the Software Defined Networking (SDN) based mobile core 

network [8]. We will next detail these three parts. 

 

2.1 Distributed cloudlets in the mobile network 

A tremendous number of Base Stations (BSs) have already been deployed in the mobile network and provide high 

radio coverage, i.e., every mobile user can communicate with a BS everywhere. Meanwhile, with the development 

of 5G technologies, the speed of the mobile access network would be much higher as compared to the existing 4G 

LTE system. These facts justify that deploying cloudlets (i.e., edge computing entities) at BSs in the mobile network 

would be a suitable solution to provide computing resources to mobile users with high availability and low latency. 

Specifically, each BS is connected to a cloudlet [9], which comprises a number of interconnected Physical Machines 

(PMs). The deployment of cloudlets is flexible, i.e., a BS can access to its local cloudlet via an access switch or 

many BSs can be connected the same cloudlet, which is located at the edge of the mobile core network.  

 

Data centers are located at remote sites (which are commonly connected to the core network directly) to provide the 

scalability and availability of the system. Specifically, the computing and storage capacities of the local cloudlets are 

limited, and thus they may not have enough capacities to efficiently analyze mobile data streams. Data centers, 

which supply sufficient and flexible resource provisioning, can be considered as backup units to process mobile data 

streams. 

2.2 Hierarchical structure of a cloudlet 

As shown in Figure 2, a cloudlet consists of two logical layers, i.e., Avatar layer and Application VM layer. The 
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Avatar layer comprises a number of Avatars. An Avatar is considered as a private VM associated with a specific 

mobile user [3]. Thus, each mobile user can upload its generated data to its Avatar1 periodically or upon requests. 

The Avatar would pre-process the received mobile data in order to generate metadata, in which the personal 

information from raw data has been parsed and trimmed, and then send them to the application VM upon requests. 

The application VM layer comprises a number of application VMs, which are deployed by the application providers. 

The application VMs are to retrieve metadata from Avatars, analyze the received metadata to generate high-level 

knowledge, and provide the corresponding services to mobile users. 

Cloudlet

...

Application VM 1 Application VM 2
Application 
VM layer

Avatar 
layer

Two logic layers 
in a cloudlet

Metadata retrieval request
Metadata retrieval response

Avatar Avatar Avatar

Mobile user

Mobile data 
streams

Offloaded 
mobile tasks

 
Figure. 2: The hierarchical structure of a cloudlet (cf. Fig. 4 in [7]). 

 

There are two methods for uploading and processing mobile data streams in a hierarchical cloudlet structure, i.e., 

passive uploading and proactive uploading. Here, we provide the terrorist detection application to illustrate how the 

passive uploading and proactive uploading methods work.  

 The passive uploading method comprises five steps: 1) if a mobile user is interested in the terrorist detection 

application, it can install the application in its Avatar. The application installed in the Avatar is to conduct face 

matching by comparing different photos. 2) If the terrorist detection application VM tries to find a terrorist, it 

would send a metadata retrieval request, which contains a set of photos of the terrorist, to the Avatars (which 

have installed the application). 3) After receiving the metadata retrieval request, the Avatar would send a data 

retrieval request to its mobile user in order to obtain the recent captured photos and videos from the mobile user. 

4) The mobile user would upload the corresponding photos and videos via the BS after it receives the data 

retrieval request. 5) The Avatar would execute the face-matching algorithm by comparing the terrorist’s photos 

with the photos and videos uploaded from the mobile user. If matched, the Avatar would respond to the 

application VM with the related metadata, i.e., the location information and time stamps of the matched photos 

and videos. 

 In the proactive uploading method, after the application has been installed in the Avatar (i.e., Step-1 in passive 

uploading), the mobile user is to proactively upload its data in terms of captured photos and videos (i.e., the 

photos and videos would be immediately uploaded and stored in the Avatar once they are captured). Once the 

application VM sends the metadata retrieval request to the Avatar (i.e., Step-2 in passive uploading), the Avatar 

would execute the face-matching algorithm immediately (i.e., Step-5 in passive uploading). 

 

The above mentioned two methods have their own pros and cons: the proactive uploading method would improve 

the response time to detect terrorists because data (e.g., photos and videos) of mobile users have already been in 

their Avatars when the Avatars receive the metadata retrieval requests.. However, Avatars need to store all the data 

streams generated by their mobile users. Avatars thus become heavily loaded VMs, which would significantly 

increase the storage resource requirement in the cloudlets and increase the overheads of migrating Avatars among 

cloudlets (which will be discussed in the next section). On the other hand, the passive uploading method may incur 

                                                 
1 It is worth to note that each Avatar can not only analyze the data generated by its mobile user but also execute the 

tasks offloaded from its mobile user [10], i.e., an Avatar acts two roles in the network: the data stream analyzer and 

the mobile task outsourcer. This may incentivize mobile users to subscribe their own Avatars. 



 

IEEE COMSOC MMTC Communications - Frontiers 

http://www.comsoc.org/~mmc/ 9/61 Vol.12, No.4, July 2017 
 

higher response time as compared to the proactive uploading method. However, Avatars do not have to store data 

streams generated by their mobile users in the passive uploading method. Hence, Avatars are considered to be 

lightly loaded VMs, thus generating less overheads in migrating Avatars among cloudlets. Our previous study [3] 

focused on the implementation of the proactive uploading method, but we will focus on the passive uploading 

method in this paper, i.e., Avatars do not proactively store data streams from their mobile users. 

 

The proposed hierarchical cloudlet architecture structure addresses Issue-1 and Issue-2. Specifically, each mobile 

user’s Avatar is considered as a private VM to facilitate resource isolation and access control. The Avatar would 

analyze the raw data (which are generated from its mobile user) and provide metadata (which do not contain 

personal information) to the application VM. This resolves Issue-1, i.e., mobile users can obtain services provided 

by the application VMs while preserving privacy of mobile users. In addition, each Avatar can be a worker node of 

an application VM, which acts as a master node to distribute workloads to the Avatars (which have been installed 

the corresponding application) and aggregate metadata from the Avatars, and provide services to users. This 

distributed computing structure resolves Issue-2 by fully utilizing the distributed computing resources in the 

cloudlets and significantly reducing the traffic load of the network as compared to the current way in which the 

application VM directly retrieves the data from mobile users, analyzes them, and provides services to mobile users. 

Moreover, the distributed computing structure provisions the flexibility for the application in placing their 

application VMs. For instance, if the terrorist detection application tries to determine whether the terrorists appeared 

in area-1 and area-2, it can create two application VMs in the two cloudlets, which are located in area-1 and area-2, 

respectively. Each application VM can send the metadata retrieval requests to their Avatars in their cloudlets. After 

the search is completed, the application VMs can be removed accordingly. 

 

2.3 SDN based mobile core network 

Instead of applying the traditional cellular core network architecture, which leads to inefficient, inflexible, and 

unscalable packet forwarding, the SDN based mobile core network is adopted in the cloudlet network. The SDN 

based mobile core network is essentially decoupling the control plane from the switches, which only run data plane 

functionalities. The control plane is offloaded to a logical central controller, which transmits the control information 

(e.g., flow tables) to the OpenFlow switches by applying the OpenFlow protocol [11], monitors the traffic statistics 

of the network, and provides Application Programming Interfaces (APIs) to network management operators. Thus, 

different mobile network functionalities, such as mobility management, user authentication, authorization and 

accounting, network virtualization, and QoS control, can be added, removed, and modified flexibly. 

 

3. Adaptive Avatar Placement 

Mobile users are roaming among BSs over time, and statically positioning mobile users’ Avatars in their original 

cloudlets may significantly increase the delay between Avatars and their mobile users. Note that delay is an 

important factor to determine the QoS of many mobile applications. On the other hand, if the Avatar always follows 

its mobile user’s movement (e.g., once a mobile user roams from BS-1’s coverage area into BS-2’s coverage area, 

its Avatar would migrate from the cloudlet, which is associated with BS-1, into the cloudlet, which is associated 

with BS-2, accordingly), a significant amount of migration overhead will be generated during the Avatar migration. 

The migration overhead may degrade the performance of the Avatar in executing applications because the Avatar 

migration requires a significant amount of bandwidth resource and non-negligible computing as well as memory 

resource of the Avatar [12], [13]. This may deprive the applications (which run in the Avatar) with less computing, 

memory as well as bandwidth resource during the Avatar migration, thus degrading the performance of the 

applications. The migration overhead of an Avatar is then modeled as a function of Avatar migration time and the 

resource requirements of the Avatar (before the migration) [14]. Note that longer migration time implies that the 

migration consumes more resource of the Avatar, and thus may degrade the performance of applications (which run 

in the Avatar).  

 

We consider the gain of the Avatar migration to be the End-to-End (E2E) delay reduction between the Avatar and its 

mobile user and the cost of the Avatar migration to be the migration overhead. Thus, we can formulate the Avatar 

placement problem2 as follows: 

Given: 1) each mobile user’s location indicator (i.e., the location of the BS that covers the mobile user) in the next 

                                                 
2 The Avatar placement problem is to determine the location of each Avatar (i.e., each Avatar is placed in which 

cloudlet) for each mobile user in the next time slot. If the location of an Avatar in the next time slot is different from 

that in the current time slot, we say the Avatar should be migrated into in the new location in the next time slot. 
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time slot; 2) the average E2E delay between each cloudlet and each BS; 3) the capacity limitation of each cloudlet 

(i.e., the maximum number of Avatars hosted by a cloudlet). 

Obtain: the placement indicator of each Avatar 𝑥𝑖𝑗  (i.e., 𝑥𝑖𝑗 = 1  indicates mobile user i’s Avatar is hosted by 

cloudlet j; else 𝑥𝑖𝑗 = 0) in the next time slot. 

Objective: maximize the profit (the gain minus the cost) of all the Avatar migrations. 

Constraints: 1) each Avatar should be placed in only one cloudlet (i.e., ∑ 𝑥𝑖𝑗𝑗 = 1); 2) the total number of Avatars 

assigned to each cloudlet cannot exceed its capacity (i.e., ∑ 𝑥𝑖𝑗𝑖 = 𝑠𝑗, where 𝑠𝑗 is the capacity of cloudlet j). 

 

The detailed formulation of the Avatar placement can be found in [14]. Note that the Avatar placement problem can 

be formulated as a mixed integer linear programming problem and can be solved by applying CPLEX [15]. In order 

to demonstrate the performance of the PRofIt Maximization Avatar pLacement (PRIMAL) strategy (i.e., the solution 

of the mentioned Avatar placement problem), we compare it with two other strategies, i.e., Static and Follow me 

AvataR (FAR), via simulations. The idea of the FAR strategy is to minimize the E2E delay between an Avatar and 

its mobile user by assigning the Avatar to the available cloudlet (i.e., the cloudlet has enough space to host the 

Avatar), which yields the lowest E2E delay. The Static strategy is to avoid the migration cost, i.e., the locations of 

Avatars do not change over time after they are initially deployed. The detailed simulation setups can be found in 

[14]. Figure 3(a) shows the average Round Trip Time (RTT) between mobile users and their Avatars incurred by 

PRIMAL, FAR, and Static, respectively. Figure 3(b) shows the average number of migrations and the average 

migration time incurred by PRIMAL, FAR, and Static, respectively. We conclude that, from Figure 3(a) and 3(b), 

PRIMAL can achieve the similar average RTT as compared to FAR, but it incurs fewer number of Avatar 

migrations and shorter average migration time. Note that although Avatar migration is not triggered by Static, the 

RTT incurred by Static is unbearable. 

    
(a)         (b) 

Figure 3: Simulation results 

 

4. Conclusion 
In this paper, we have introduced the cloudlet network to bring the computing resource from centralized cloud to 

mobile users in order to minimize the delay between mobile users and computing resource. We have also designed 

the hierarchical structure to address Issue-1 and Issue-2. Furthermore, we have proposed to migrate mobile users’ 

Avatars among edge computing cloudlets to resolve Issue-3. We have also proposed the green cloudlet network by 

introducing green energy into the cloudlet network to reduce the operational cost of maintaining the distributed 

cloudlets [16] and we have designed the energy-aware Avatar migration strategy to fully utilize green energy [17], 

[18]. 
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1. Introduction 

Mobile cloud computing (MCC) provides computing services to mobile devices to enable them to perform their 

computation-intensive applications. By utilizing cloud computing services, the limited processing power of mobile 

devices is no longer a barrier for the rapid development of future applications. The mobile devices can offload their 

computation tasks to the cloud servers to benefit from powerful computing resources, save their battery power, and 

expedite the task execution. There are various cloud-assisted mobile platforms including ThinkAir [1] and MAUI 

[2] that realize computation task offloading in mobile environments. The module making the offloading decision is 

called the task scheduler. The task scheduler dynamically makes an offloading decision upon arrival of a task. In 

order to fully exploit the advantages of MCC systems, the design of an efficient task scheduler is crucial.  

 

Computation task offloading in MCC has been widely studied in the literature. In [3], the authors developed an 

offloading decision strategy that aims to minimize the energy consumption of a mobile device while meeting a 

latency deadline. In [4], the authors proposed an energy-delay aware mechanism for computation task offloading in 

MCC systems. Although the proposed mechanism addresses the energy-delay tradeoff, all computing tasks face the 

same tradeoff between energy consumption and delay regardless of their different sensitivities to delay. In [5], the 

authors designed a centralized controller hosted in cloud servers and optimized the mobile users’ offloading 

decisions by minimizing the overall cost. An application-aware computation offloading mechanism that balances the 

tradeoff between energy efficiency and responsiveness of mobile applications was proposed in [6]. In [7], the 

authors studied energy-efficient computation offloading under a completion time deadline constraint.  

 

An efficient task scheduler should take the energy saving obtained from task offloading and the delay of a task into 

account to arrive at the optimal offloading decision. However, the aforementioned task schedulers do not consider 

the heterogeneous latency requirements of different delay-sensitive applications. In this paper, we design an efficient 

task scheduler by using an optimization framework that  takes the energy consumption and delay into account. We 

consider both delay-sensitive and delay-tolerant applications and address their different latency requirements. We 

then evaluate the performance of our proposed task scheduler through numerical studies. We further compare the 

proposed task scheduler with ThinkAir [1] and MAUI [2] and illustrate its superiority in terms of energy 

consumption and delay for delay-sensitive and delay-tolerant applications.  

 

2. Dynamic Task Scheduler 

In this section, we first introduce the system model of a mobile device. We then design the task scheduler using a 

utility maximization framework and obtain the optimal offloading strategy.  

 

To model the task scheduler, we consider a queuing system with two servers, as illustrated in Fig. 1. The first server 

is the centralized processing unit (CPU) of the mobile device and represents the local task execution. The second 

server, which is the wireless interface (e.g., WiFi, Long-Term Evolution (LTE)), is used to model the task offloading 

to the cloud servers. We classify the mobile user's workload into three categories: Offloadable computing tasks, 

CPU workload, and network traffic. We assume that they arrive according to independent Poisson processes with 

rate 𝜆o, 𝜆c, and 𝜆nt, respectively. The offloadable computing tasks can either be processed by the local CPU or be 

offloaded to the cloud servers, while the other workloads have to be processed by their allocated servers. We denote 

the size of each task by 𝑧 (in bits) and its processing density by 𝛾 (in cycles/bit), which is the number of CPU cycles 

required to process a unit bit of data. We model 𝑧  and 𝛾  as random variables that follow probability density 

functions (pdf) 𝑓𝑍(𝑧) and 𝑓𝛤(𝛾), respectively. The service time in the CPU is 𝛾𝑧/𝐶, where 𝐶 is the CPU processing 

capacity (in cycles/time unit). Similarly, the service time in the wireless interface is 𝑧/𝜇, where 𝜇 (in bits/sec) is the 

data rate of the wireless interface. We consider a slow flat fading wireless channel model and assume that the data 

rate of the wireless interface remains constant during the transmission of a task. However, 𝜇 is a random variable 

with pdf 𝑓𝑀(𝜇). We further assume that the data rate is known to the scheduler upon arrival of the tasks. 
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We model the sensitivity of each task to delay by a parameter 𝜃, which depends on the type of application [8]. The 

value of 𝜃 follows pdf 𝑓𝛩(𝜃) and is known to the scheduler upon arrival of the task. A large value of 𝜃 represents 

applications with stringent delay requirements, whereas applications with 𝜃 = 0 are tolerable to delay. 

 

We now introduce the offloading decision indicator to indicate whether or not a task is offloaded. We denote the 

offloading decision indicator for a task of size 𝑧 with processing density 𝛾 and delay parameter 𝜃 when the data rate 

is 𝜇 as 𝛿(𝑧, 𝛾, 𝜃, 𝜇) ∈ {0, 1}. We set 𝛿(𝑧, 𝛾, 𝜃, 𝜇) = 1 when the task is offloaded to the cloud servers. We also denote 

the probability of 𝛿(𝑧, 𝛾, 𝜃, 𝜇) = 1 by 𝜋(𝑧, 𝛾, 𝜃, 𝜇) ∈ [0, 1]. We further define the offloading probability 𝜋 as the 

average probability that a task is offloaded to the cloud servers. We have 

𝜋 = ∫ 𝜋(𝑧, 𝛾, 𝜃, 𝜇)d𝐹𝑍,𝛤,𝛩,𝑀(𝑧, 𝛾, 𝜃, 𝜇),
ℝ+

4
 (1) 

where d𝐹𝑍,𝛤,𝛩,𝑀(𝑧, 𝛾, 𝜃, 𝜇) is the joint cumulative distribution function of random variables 𝑧, 𝛾, 𝜃, and 𝜇. 

 

The task scheduler makes the offloading decisions based on a utility maximization framework. The utility is the 

weighted sum of the energy consumption saving and delay improvement obtained by offloading the tasks to the 

cloud servers. It reflects the benefit of computation task offloading. We first define the energy consumption saving 

as the energy consumed in the CPU to execute the task minus the transmission energy required to submit the task to 

the cloud servers. We follow the energy consumption models used in [4] and [9]. The energy consumed in the CPU 

to execute a task of size 𝑧 and processing density 𝛾 is 𝜅𝛾𝑧/𝐶, where 𝜅 is a constant and depends on the CPU model. 

Similarly, the energy consumed to transmit a task of size 𝑧 to the cloud servers is 𝛽𝑧/𝜇, where 𝛽 depends on the 

type of the wireless interface.  

 

We further determine the delay improvement, which is the difference between the time required to complete a task 

locally and the time spent to process the task in the cloud servers. We first obtain the delay a task experiences if it is 

offloaded to the cloud servers. We assume that the cloud servers are located in close proximity of the mobile device. 

Thus, the delay consists of the following terms: the queuing delay of the wireless interface, the time required to 

transmit the task to the cloud servers, and the processing time in the cloud servers to complete the task. Notice that 

the time required to retrieve the results from the cloud servers is negligible since the downlink rate is usually much 

higher than the uplink rate. As shown in Fig. 1, the arrival at the wireless interface queue consists of two workloads: 

the offloaded tasks that arrive according to a Poisson process with rate 𝜋𝜆o when the offloading probability 𝜋 is 

given, and the network traffic. Combining these two independent Poisson processes forms another Poisson process 

[10] with arrival rate 𝜋𝜆o + 𝜆nt. Thus, when 𝜋 is a given constant, we model the wireless interface queue as an 

M/G/1 queuing system. Let 𝑤𝑅(𝜋) and 𝑠𝑅(𝑧, 𝜇)  =  𝑧/𝜇 denote the waiting time and the service time of this queue, 

respectively. The queue is stable if 𝜋𝜆o + 𝜆nt < 1/𝔼[𝑠𝑅] holds, where 𝔼[𝑠𝑅] denotes the mean service time. In this 

case, the mean waiting time can be obtained using the Pollaczek-Khinchin formula [10] and is as follows:  

𝔼[𝑤𝑅(𝜋)] =
(𝜋𝜆o + 𝜆nt)𝔼[𝑠𝑅

2]

2(1 − (𝜋𝜆o + 𝜆nt)𝔼[𝑠𝑅])
.  

In addition to the queuing delay and service time, we consider the time required to process the task in the cloud 

servers and denote it by 𝑠𝐶(𝑧, 𝛾)  =  𝛾𝑧/𝐶𝑅, where 𝐶𝑅 denotes the processing capacity (in cycles/unit time) of the 

cloud servers. Thus, given 𝜋, if a task is offloaded, its total delay is 𝔼[𝑤𝑅(𝜋)] + 𝑠𝑅(𝑧, 𝜇) + 𝑠𝐶(𝑧, 𝛾).  

Figure 1. The task scheduler and queuing system of a mobile device. 
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Similar to the wireless interface queue, we obtain the delay to perform the task locally in the CPU queue. The CPU 

queue is an M/G/1 queuing system with arrival rate (1 − 𝜋)𝜆o + 𝜆c, when 𝜋 is given. We also define 𝑤𝐿(𝜋) and 

𝑠𝐿(𝑧, 𝛾) as the waiting time and service time, respectively. According to the Pollaczek-Khinchin formula, when the 

queue is stable (i.e., (1 − 𝜋)𝜆𝑜 + 𝜆𝑐 < 1/𝔼[𝑠𝐿]), the mean waiting time in the CPU queue is given by: 

𝔼[𝑤𝐿(𝜋)] =
((1 − 𝜋)𝜆o + 𝜆c)𝔼[𝑠𝐿

2]

2(1 − ((1 − 𝜋)𝜆o + 𝜆c)𝔼[𝑠𝐿])
.  

Moreover, the service time of a task of size 𝑧 and processing density 𝛾 is 𝑠𝐿(𝑧, 𝛾)  =  𝛾𝑧/𝐶. Thus, given 𝜋, the delay 

introduced by performing the task locally is 𝔼[𝑤𝐿(𝜋)] + 𝑠𝐿(𝑧, 𝛾). 

 

We now calculate the delay improvement obtained by offloading the task to the cloud servers. Given offloading 

probability 𝜋, the delay improvement, denoted by 𝜏(𝑧, 𝛾, 𝜇, 𝜋), is as follows: 

𝜏(𝑧, 𝛾, 𝜇, 𝜋) = 𝔼[𝑤𝐿(𝜋)] + 𝑠𝐿(𝑧, 𝛾) −  (𝔼[𝑤𝑅(𝜋)] + 𝑠𝑅(𝑧, 𝜇) + 𝑠𝐶(𝑧, 𝛾)).  

As mentioned earlier, the utility consists of the energy consumption saving and delay improvement. Given 𝜋, we 

denote the utility obtained from offloading a task of size 𝑧 with processing density 𝛾 and delay parameter 𝜃  as 

𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) when the data rate is 𝜇. We have 

𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) =
𝜅𝛾𝑧

𝐶
−

𝛽𝑧

𝜇
+ 𝜃𝜏(𝑧, 𝛾, 𝜇, 𝜋).  

 

The scheduler makes the offloading decision upon arrival of each task with the goal of maximizing the utility 

obtained from offloading the task. Notice that if a task is performed locally (i.e., 𝛿(𝑧, 𝛾, 𝜃, 𝜇)  =  0), the utility is 

zero. Thus, the task scheduler solves the following problem: 

maximize    𝛿(𝑧, 𝛾, 𝜃, 𝜇)𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) 

subject to  𝛿(𝑧, 𝛾, 𝜃, 𝜇) ∈ {0,1}.        
(2) 

Let 𝛿∗(𝑧, 𝛾, 𝜃, 𝜇) denote the optimal offloading decision indicator. By solving problem (2), we have 

𝛿∗(𝑧, 𝛾, 𝜃, 𝜇) = {
1,     if  𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) ≥ 0 
0,     otherwise.                  

   (3) 

 

To obtain the optimal offloading decision indicator, we need to know the offloading probability 𝜋. According to (3), 

if the utility obtained from offloading a task is non-negative, the scheduler offloads the task to the cloud servers. 

This happens with probability 𝜋(𝑧, 𝛾, 𝜃, 𝜇). Thus, 𝜋(𝑧, 𝛾, 𝜃, 𝜇) = 1 if 𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) ≥ 0. We define the offloading 

region 𝒪(𝜋) as the set of (𝑧, 𝛾, 𝜃, 𝜇) such that 𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) ≥ 0, i.e., 

𝒪(𝜋) = {(𝑧, 𝛾, 𝜃, 𝜇) ∈ ℝ+
4 | 𝑢𝜋(𝑧, 𝛾, 𝜃, 𝜇) ≥ 0}.    

We now obtain the optimal offloading probability in the following theorem.  

 

Theorem 1. The optimal offloading probability, denoted by 𝜋∗, can be uniquely obtained by solving the following 

equation when we substitute 𝜋(𝑧, 𝛾, 𝜃, 𝜇) into (1): 

𝜋∗  = ∫ 𝜋(𝑧, 𝛾, 𝜃, 𝜇)d𝐹𝑍,𝛤,𝛩,𝑀(𝑧, 𝛾, 𝜃, 𝜇) = ∫ d𝐹𝑍,𝛤,𝛩,𝑀(𝑧, 𝛾, 𝜃, 𝜇)
𝒪(𝜋∗)

.
ℝ+

4
 (4) 

Proof. Please refer to [11] for the proof of Theorem 1. 

 

3. Performance Evaluation 

In this section, we investigate the performance of the proposed task scheduler. We assume that the mobile device 

has a CPU with clock speed 𝐶 =  1.4 GHz.  We further assume that 𝑧, 𝛾, and 𝜃 follow uniform distributions in [100 

B, 1 MB], [100, 3000] cycles/bit, and [0, 5], respectively, while we fix 𝜇 = 2  Mbps. The other simulation 

parameters are 𝜅 = 1005 mJ/sec, 𝛽 = 2605 mJ/sec [4], 𝜆c = 0.08, 𝜆nt = 0.02, and 𝐶𝑅 = 4 GHz. 

 

We compare the performance between our proposed task scheduler and task scheduling policies ThinkAir–E, 

ThinkAir–D, and ThinkAir–ED proposed in [1]. ThinkAir–E prioritizes energy conservation and offloads the tasks 

if the energy consumption is expected to improve. ThinkAir–D optimizes the offloading decision in order to 

expedite the execution of the tasks. However, ThinkAir–ED is an energy-delay aware offloading mechanism and 

offloads the computing tasks only if both the energy consumption and the execution time are expected to improve. 
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We further compare our proposed task scheduler with MAUI [2]. To make an offloading decision, the MAUI solver 

aims to minimize the mobile device’s energy consumption subject to a latency constraint. The solver ensures that the 

total delay experienced by each task does not exceed an application-dependent constant delay, denoted by 𝐿. In 

order to compare our proposed scheduler with MAUI, we set 𝐿 =  1/𝜃 for each application.  

 

Fig. 2 illustrates the average delay and the average energy consumption for different arrival rates of the computing 

tasks. The proposed scheduler substantially outperforms ThinkAir–D in terms of energy consumption. Furthermore, 

our proposed scheduler consumes slightly more energy than ThinkAir–E, however, it is better able to meet the 

requirements of delay-sensitive tasks. As can be observed from Fig. 2, our proposed scheduler reduces the delay by 

80% and 40% compared to ThinkAir–E and MAUI, while it only consumes 17% and 7% more energy, respectively.  

 

Fig. 3 shows the average energy consumption per task for different schemes and the corresponding average delay.  

We vary the delay parameter 𝜃 from 0 to 103 to investigate the tradeoff between the energy consumption and delay 

for different applications. The proposed scheduler consumes more energy than ThinkAir-E to expedite the execution 

of delay-sensitive tasks, while it behaves similar to ThinkAir–D when 𝜃 is very large. Moreover, for delay-tolerant 

tasks, the proposed task scheduler consumes the same amount of energy as ThinkAir-E.  

 

 

Figure 3. The tradeoff between the energy consumption and delay. 

 

4. Conclusion 

In this paper, we proposed a dynamic task scheduler for computation task offloading in MCC systems. We 

considered both delay-sensitive and delay-tolerant applications and designed the task scheduler based on a utility 

maximization framework. The proposed scheduler arrives at the optimal offloading decision when maximizing the 

 

Figure 2. The average delay per task and the corresponding average energy consumption per task versus different 

arrival rates of the computing tasks. 
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utility obtained by using the cloud computing services. We further investigated the performance of the proposed task 

scheduler through numerical experiments. Our results showed that the proposed task scheduler outperforms existing 

task scheduling policies in terms of energy consumption and delay. More details of the design of the task scheduler 

as well as additional simulation results can be found in [11].  
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1. Introduction 

The Internet of Things (IoT) environment will encompass billions of devices that are expected to generate more than 

two Exabyte of data per day [1]. Fog computing is a promising approach to perform distributed computation and 

caching for supporting IoT applications such as self-driving vehicle communications and drone flight control as well 

as enabling augmented reality (AR) or virtual reality (VR) services [2]. To meet the ultra-low latency 

communication and computing requirements of such applications, relying on cloud computing will no longer be 

possible due to the round-trip delay needed to reach the cloud data center. Thus, fog computing has been proposed 

as an extension of the cloud computing. In fog computing, some of the cloud’s functionalities such as caching, 

control, and computing are migrated to edge fog nodes [2]. Therefore, by pooling the computing resources of fog 

nodes located in proximity of one another at the edge of a wireless network, fog computing can achieve low-latency 

data transmission and computation.  

 
Fig. 1: Example of distributed fog computing and its integration with cloud computing. 

 

To enable low-latency fog computing, a fog-centric radio access network (FRAN) architecture was introduced in [3]. 

Fig. 1 shows an illustration of an FRAN-based fog computing network consisting of fog nodes and a central cloud 

that operates a cloud-based radio access network (CRAN). In Fig. 1, fog nodes can be clustered for pooling their 

resources. Then, distributed fog computing is used to process the computing tasks of a fog node with low latency. 

For instance, the user of a fog node can run a big data application that requires highly intense computing tasks. If the 

fog node does not have sufficient computing resources, it can find other neighboring fog nodes that have idle 

computing resources that they are willing to share. After discovering the neighboring nodes, the computing tasks can 

be distributed to the neighbors and computed in a distributed way to achieve low computational latency. Also, 

caching at the fog layer can be used to reduce the computational latency. For example, in Fig. 1, fog nodes can be 

associated with a fog access point (AP) that has a local data storage that it can use for caching. Whenever a 

computing task of a fog node needs to have input data, it is possible that the data is not stored at the fog node. In this 

case, caching the data at the fog AP can reduce the data transmission latency, thus resulting in a low computational 

latency. Moreover, in an FRAN, caching can be done by any fog node having a data storage. Thus, whenever fog 

nodes perform the functions of caching or computing for other devices including many IoT home appliances or 

sensors, low computational latency can be achieved, if the system is properly designed. 

 

2. Online Optimization Frameworks for Fog Computing 

Fog computing will generally need to operate in highly dynamic networking environments. For instance, distributed 

computing can be performed among heterogeneous fog nodes such as smartphones, tablets, and other IoT devices 

and embedded systems. Therefore, co-existing fog nodes may have different computing resources. When those fog 

nodes participate in distributed computing, each fog node is able to individually control and manage its computing 

resources. In consequence, the amount of shared computing resources of a fog node can be controlled by each 

individual fog node. In this case, the fog network will generally not be able to know, in advance, the available 

computing resource shared by each fog node. Also, fog nodes such as handheld devices and vehicles can be mobile. 

While fog nodes are moving, if a fog node moves beyond a maximum communication distance, it will no longer be 
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able to join the fog computing network. Therefore, fog nodes can dynamically join and leave a network and, thus, it 

is challenging to know, a priori, the full information on the location and the future availability of different fog nodes. 

Thus, complete information on the fog computing environment is not always known to the involved fog nodes. 

Under such lack of information availability, fog nodes will not be able to use conventional offline optimization 

techniques, for computing, task distribution, or caching purposes, as such techniques typically require at least some 

form of information availability (full information or statistical) at the level of each fog node. Thus, to capture the 

dynamically varying and largely uncertain environment of fog networks, one can rely on the powerful tools of 

online optimization [4]. In online optimization problems, newly updated information is revealed to the system in a 

sequential manner. The sequentially arriving information becomes the input of an online problem. Thus, unlike 

offline optimization problems, online problems can be updated according to the input. Therefore, when an input is 

initially unavailable and revealed sequentially, an online algorithm must be used for decision making and 

optimization purposes. Hence, for an online cost minimization problem P, when an input set I is given in an online 

manner and the online algorithm yields feasible output OA, the objective function can be shown as C(I, OA) where C 

is a function of the online input and the output of the algorithm [5].  

 

For an online algorithm solving the online problem, competitive analysis can be used to measure the performance of 

an online algorithm. Using competitive analysis, the performance of the optimal offline algorithm is compared to the 

performance of the online algorithm, and the ratio between online and offline algorithms is known as a competitive 

ratio [5]. For instance, for a cost minimization problem, the costs of an online algorithm and optimal offline 

algorithm are denoted by ALG(I)=C(I,OA) and OPT(I)= min C(I,OA), respectively. Then, the competitive ratio is c 

satisfying 𝑐 ≥ 𝐴𝐿𝐺(𝐼)/𝑂𝑃𝑇(𝐼) , ∀𝐼. Whenever c=1, then the online algorithm and offline algorithm achieve the 

same performance. However, optimality cannot be readily achieved in online since the online algorithm is run 

without having the complete knowledge about the future events. Thus, the goal of developing online algorithms is to 

minimize the value of c in order to achieve a suboptimal solution whose performance is as close as possible to the 

optimal, offline approach. Also, when an input is given, the decision should be determined by an online algorithm 

before the next input arrives. In practice, the input arrival interval can be very short. In that case, the online 

algorithm needs to have low time complexity to make a decision in real time. Particularly, using a low time-

complexity algorithm can further reduce the decision-making latency, thus helping to achieve the ultra-low latency 

in fog computing. This provides a key rationale for adopting online optimization solutions for distributed and real-

time fog computing. In the next section, we introduce fog computing applications in which online optimization tools 

are a natural choice. 

 

3. Applications of Online Optimization 

3.1 Fog Computing for IoT Devices 

The IoT environment will include many small sensors for smart home. smart building control system, smart 

transportation, and even wearables that can deliver a wide range of services to the end-users. Considering a network 

that consists of a sensor layer and a fog layer, the IoT sensors with low computing power will generally seek to 

offload their computational tasks to other fog nodes in the fog layer such as smartphones or APs. By doing so, the 

tasks from the sensors can be computed with more powerful computing resources provided by the more capable fog 

nodes. The tasks are first offloaded from sensors to a certain fog node. Then, the fog node that received the tasks 

initiates distributed fog computing. This node will be referred to as the initial fog node. To compute the tasks over 

the fog network, the initial fog node distributes the received tasks to other neighboring fog nodes. During task 

distribution, the transmission latency can be defined as the sum of the waiting time before the tasks are transmitted 

and the wireless transmission delay incurred by the transmission from the initial fog node to another fog node. Once 

a neighbor successfully receives the tasks from the initial fog node, the computation procedure will further incur a 

computational latency that includes the waiting time in the computational queue and the actual processing time.  

 

In this typical use case of fog computing, the initial fog node first needs to select an optimal set of neighboring fog 

nodes and distribute the tasks to this selected set so as to minimize the latency. However, in practice, neighboring 

fog nodes can dynamically join and leave the fog computing network. Therefore, a given fog node will typically not 

be able to know when neighboring fog nodes will join the network and also where those neighboring nodes are 

located. Thus, when the arrival of neighboring fog nodes is uncertain, the information cannot be known to the initial 

fog node. This uncertainty of the location and the order of arrival of neighboring fog nodes can be modeled as a 

sequential input of an online optimization problem. Then, an online optimization problem can be formulated to 

minimize the total computational latency defined as the sum of the transmission latency and computational latency.  
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Fig. 2: Maximum latency (computation and transmission) when tasks are offloaded to neighboring fog nodes and cloud. The 

transmission latency to the cloud increases with dc that is the distance between the initial fog node and the base station that is 

connected to the cloud.  

 

In [6], the fog network formation and task distribution problems are jointly studied to minimize the maximum total 

computational latency when the initial fog node can offload tasks to neighboring nodes and cloud. To enable the 

initial fog node to form a local fog network when the arrival process of neighboring nodes is randomly determined, 

an online framework based on the online secretary problem is proposed in [6]. In secretary problems, while an 

interviewer meets the applicants in a random sequential order, the interviewer should determine whether to hire the 

applicant or not. If a candidate is not hired, the interviewer cannot recall the rejected applicant. By using the analogy 

between the secretary problem and the fog network formation problem, in [6], we proposed an online algorithm that 

first observes the performance of some fog nodes and select the fog nodes by using the information gathered during 

the observation stage. This algorithm also repeatedly optimizes the task distribution whenever new fog node join fog 

computing. The simulation result in Fig. 2 shows that the online algorithm can successfully minimize the latency 

while achieving the a latency that is similar to the optimal latency that can be found by the offline algorithm using 

complete information of neighboring nodes. Fig. 2 also shows that when the transmission latency to the cloud 

decreases by changing the distance to the cloud dc from 400m to 300m, the maximum total latency can be reduced 

for all network sizes. In this work, to formulate the online optimization problem, the uncertain location and future 

availability of neighboring fog nodes are modeled as an online input. This online approach can be extended and 

applied for networks with moving fog nodes, e.g., autonomous cars or unmanned vehicles. In such scenarios, due to 

mobility, fog nodes are unable to know the future location of neighbors as well aso the time duration that each fog 

node can dedicate for participation in fog computing. Thus, online optimization can be used for moving fog nodes to 

solve fog network formation and task distribution problems. Naturally, other similar IoT scenarios with uncertainty 

can be modeled via online optimization. 

 

3.2 Caching Fog Computation 

In fog computing, fog nodes can further reduce their latency by caching the input data needed to process their 

computational operations. The computational operation of the application running on a fog node can have one 

corresponding input data (e.g. one file). In this case, the goal is to fetch the necessary input data, and this caching 

technique can be viewed as data caching. For such data caching, an interesting information-theoretic latency 

analysis is provided in [7] when the contents are delivered through a fronthaul and a wireless channel. In this 

analysis, it is assumed that the set of popular file is static; thus, it can be seen as offline caching. However, if the 

popularity of data changes within a short time interval, the data requests can be modeled as an online input. For 

scenarios in which fog nodes are unable to know full knowledge on user requests, online optimization can be used to 

develop online caching strategy. For instance, the work in [8] proposes an online scheme to minimize the data 

delivery time by replenishing the fog node’s cache and scheduling the delivery of the requested files.  

 

In contrast to data caching in which any given operation has a single input set, a more realistic scenario will include 

multiple files that can possibly be used for processing a computational operation at a fog node. Then, from those 

files, an operation can select a specific file as input data. When each input file represents the computational 

intermediate result (IR) of an operation, fog nodes can cache the computation by storing the possible input files, and 

this caching technique can be viewed as computational caching [9]. If the computational operations allow reusing 

the IR from previous computational operations, computational caching can be used to reduce the computational 

latency at a fog node. Therefore, by downloading IRs from neighbors, the fog node can avoid redundant 

computation, and the computational latency can be reduced. However, since downloading cached computation from 
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neighbors incurs an additional cost due to transmission latency, the fog node should properly decide whether or not 

to download IRs. Also, in computational caching, the uncertain arrival order of different computational operations 

can be modeled as an online input. Therefore, under uncertain future computation, we can consider the online 

computational caching problem that minimizes the transmission and computational latency where an online 

algorithm makes the downloading and caching decisions. This online computational caching can be applied to video 

applications. When the randomness of content requests is modeled as an online input, the online data caching can be 

used to fetch the requested data with low latency. Furthermore, by using online computational caching, the fog 

nodes can download the requested data in the form of IR from the neighboring nod; thus further optimizing the 

computational latency. 

 

3.3 Caching at Energy Harvesting Fog Nodes 

To reduce energy consumption of fog computing, mobile network operators can deploy self-power fog APs that use 

the harvested energy from ambient energy sources, e.g., solar or wind. However, when self-powered fog APs are not 

connected to the conventional power grid, they can be turned off due to the unexpected energy outage. Thus, the fog 

network may no longer be able to use the data cached at APs that are no longer operational due to power outage. 

This uncertainty on energy harvesting makes it very challenging to operate self-powered fog computing networks. 

To partially address this challenge, the problem of maximizing the caching payoff of self-powered APs is studied in 

[10]. In this work, the proposed algorithm enables self-powered fog APs to decide whether to accept the arriving 

requests from users and also whether to cache the downloaded data. While it is assumed that the energy level of APs 

increases by a constant unit in [10], in practice, the energy arrival process can be randomly determined. Thus, it can 

be difficult to know the future energy status. Here, the randomness of energy arrival can be modeled as online input 

[11]. By doing so, an online problem can be formulated to minimize the latency when self-powered fog APs decide 

whether to cache the data. Similarly, if fog nodes use energy harvesting, the online energy arrival can be applied to 

other applications. For example, self-powered fog nodes can be used to relay the data traffic to a server. Then, the 

uncertainty of the harvested energy is modeled as the online energy arrival. Therefore, one can consider an online 

problem that optimizes the data routing path when the energy states of fog nodes are uncertain. As such, online 

optimization provides powerful mechanisms for handling uncertain energy arrivals in energy harvesting fog 

networks. 

 

4. Summary 

In this paper, we have introduced the framework of online optimization as a powerful tool for operating distributed 

fog computing networks in dynamic and uncertain environments. In particular, we have discussed three key 

applications of online optimization for fog computing. First, we have shown how online optimization can be used to 

study distributed fog computing when the location and presence of fog nodes have uncertainty. Then, we have 

shown that online optimization can be used to enable caching in fog computing when future caching requests are 

unknown to the fog node. Finally, we have shown that online optimization can be used to perform caching at energy 

harvesting APs when the energy arrival at the self-power fog AP is random. In summary, online optimization tools 

are expected to play a key role in future fog computing networks primarily due to the need for low latency operation 

and the online models that capture the dynamic and uncertain environments.  
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1. Introduction 

MEC is an architectural model and specification proposal (i.e., by European Telecommunications Standards Institute 

- ETSI) that aims at evolving the traditional two-layers cloud-device integration model, where mobile nodes directly 

communicate with a central cloud through the Internet, with the introduction of a third intermediate middleware 

layer that executes at so-called network edges. This promotes a new three-layer device-edge-cloud hierarchical 

architecture, which is recognized as very promising for several application domains [1]. In fact, the new MEC model 

allows moving and hosting computing/storage resources at network edges close to the targeted mobile devices, thus 

overcoming the typical limitations of direct cloud-device interactions, such as high uncertainty of available 

resources, limited bandwidth, unreliability of the wireless network trunk, and rapid deployment needs. 

 

Although various MEC solutions based on fixed edges enable an increase of the quality and performance of several 

cloud-assisted device services, currently there are still several non-negligible weaknesses that affect this emerging 

new model. First, the number of edges is generally limited because edges are deployed statically (usually by telco 

providers) and their configuration and operation introduce additional costs for the supported services, such as 

deployment, maintenance, and configuration costs. Second, once deployed, edges are rarely re-deployed (due to the 

high re-configuration cost) in other positions and this might result in high inefficiency, e.g., as service load 

conditions might significantly change dynamically. Finally, some geographical areas might become interesting 

hotspots for a service only during specific time slots, such as a square becoming crowded due to an open market 

taking place only at a specific timeslot and day of the week. 

 

At the same time, the possibility to leverage people roaming though the city with their sensor-rich devices has 

recently enabled Mobile Crowd-Sensing (MCS). In fact, by installing an MCS application, any smartphone can 

become part of a (large-scale) mobile sensor network, partially operated by the owners of the phones themselves. 

However, for some high-demanding MCS applications (e.g., a surveillance service that, for security purposes, 

monitors an environment with smartphone cameras that capture photos/videos of the surroundings and exploits face 

recognition to trace suspicious users’ movements), regular smartphones often have not enough capabilities to timely 

perform the requested local tasks, in particular if considering their possible immersion in hostile environments with 

possible frequent intermittent disconnections from the global cloud. 

 

In other words, we claim that there are several practical cases of large and growing relevance where the joint 

exploitation of MEC and MCS would bring highly significant benefits in terms of efficient resource usage and 

perceived service quality. However, notwithstanding recent advances in both MEC and MCS, to the best of our 

knowledge, only a very limited number of seminal works has explored the mutual advantages in the joint use of 

these two classes of solutions, and they are mostly focused on pure technical communication aspects without 

considering the crucial importance of having humans as central contributors in the loop [2, 3, 4]. 

 

The paper reports some research ideas and findings in a brand new area that we call Human-driven Edge Computing 

(HEC) defined as a new model to ease the provisioning and deployment of MEC platforms as well as to enable more 

powerful MEC-enabled MCS applications. First and foremost, HEC eases the planning and deployment of the basic 

MEC model: it mitigates the potential weaknesses of having only Fixed MEC entities (FMEC) by exploiting MCS to 

continuously monitor humans and their mobility patterns, as well as to dynamically re-identify hot locations of 

potential interest for the deployment of new edges. Second, to overcome FMEC limitations, HEC enables the 

implementation and dynamic activation of impromptu and temporary Mobile MEC entities (M2EC) that leverage 

resources of locally available mobile devices. Hence, a M2EC is a local middleware proxy dynamically activated in 

a logical bounded location where people tend to stay for a while with repetitive and predictive mobility patterns [5], 

thus realizing a mobile, opportunistic, and participatory edge node. Third, given that M2EC, differently from FMEC, 

does not implement powerful backhaul links toward the core cloud, HEC exploits local one-hop communications 
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and the store-and-forward principle by using humans (moving with their devices) as VM/container couriers to 

enable migrations between well-connected FMEC and local M2EC.  

 

2. Boosting Mobile Edge Computing through Human-driven Edge Computing 

We refer to the scenario shown in Fig. 1. It extends the usual three-layer device-MEC-cloud hierarchical architecture 

(based on the interposition of FMEC entities) with the addition of the new M2EC entity. Indeed, the MCS approach 

combined with the seamless tracking of volunteers (monitoring both their mobility and their performance in terms of 

completion rates of assigned sensing tasks) allows to: i) identify the optimal locations where people tend to interact. 

Such locations ease the effective deployment of FMEC and M2EC. Furthermore, it allows to ii) select of those users 

willing to host M2EC. Such users act as local access points to the hierarchical HEC.  

 

We experienced with the ParticipAct MCS living lab [6] in order to clarify the effectiveness of architecture proposed. 

We learned from ParticipAct that some locations aggregate people during all the day (such locations are indeed ideal 

candidates for the FMEC, see E1, E2, and E3 in Fig. 1). At the same time some locations become active only during 

shorter and different timeslots (e.g., P1 and P4 from 9:00AM to 10:30AM, while P2 is frequented only from 4:00PM 

to 6:00PM). These latest areas, out of the highly frequented people paths, would highly benefit of being served by a 

local (in time and space) M2EC, while it would be inefficient and overprovisioned to have additional FMEC there 

(see Fig. 1).  

 

 
Fig. 1: FMEC, M2EC, and couriers in our HEC model. 

 
Another interesting aspect we learned from the ParticipAct MCS living lab concerns HECs. They exploit 

opportunistic interactions among devices in order to enable the migration of Virtual Machines (VM)/containers. This 

feature can be achieved by leveraging human couriers moving from/to different FMECs (see Fig. 1) [7]. In our 

reference architecture, devices can interact through one-hop ad-hoc communications. Such interactions are possible 

by using short-range network interfaces, such as Bluetooth (i.e., up to 25m), Wi-Fi configured in direct mode (i.e., 

up to 150m) or the LTE-direct technology (i.e., up to 500m).  

Similarly to the paradigm adopted with the MSN, courier devices automatically down/upload VM/containers from 

the FMEC as soon as they are close enough to another device in order to transfer data. In turn, devices can share 

data gathered from other devices roaming in the same M2EC (see dotted lines in Fig. 1). Refer to Section 3 for the 

selection criteria of the most suitable human couriers. 

 

Without claiming completeness and due to space limitations, in the following we briefly overview the current state-

of-the-art in the main related fields. Focusing on architectural aspects of HEC, the MEC/fog literature has already 

produced some relevant modeling work and some seminal design/implementation results. Narrowing to efforts close 

to ours, as reported in [1], some first exploratory research activities have considered cooperation issues between edges 
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and the core, but only a very few works concentrated on the opportunities of having cooperation between devices and 

the edges. Considering MCS as application scenario, [2] and [3] propose to enhance the MCS process by leveraging 

intermediate MEC nodes, namely, FMECs, to boost data upload from mobile nodes to the infrastructure [2] and to 

provide more computing/storage capabilities closer to end mobile devices [3]. A very recent and interesting work, the 

closest to our HEC concept for what relates to enabling more collaboration between entities co-located at edges is [4]: 

it proposes not only to have the traditional “vertical” collaboration between devices, MEC, and cloud level, but also 

an “horizontal” collaboration between entities at the same level via ad-hoc communications; however, it neglects 

humans and social/mobility effects, namely, there is no idea to dynamically identify and impromptu form M2ECs as 

in our novel HEC proposal.   

 

Finally, concerning the system and the implementation aspects, only a very few research activities are focused on the 

migration of VM/container on MEC middleware for mobile services over hostile environments. It is worth to notice 

that such activities are relevant aspects of modern CPS. Authors of [8] highlight the limitations of traditional live VM 

migration based on edge devices. They propose a live migration approach in response to client handoff in cloudlets, 

with less involvement of the hypervisor and, at the same time, by promoting migration to optimal offload sites. 

Authors also discuss how to  adapt the system to the changing network conditions and processing capacity. The work 

described in [9] presents the foglets programming infrastructure. Such infrastructure handles some mechanisms for 

quality/workload-sensitive migration of service components among fog nodes. Another interesting work is reported in 

[10]. It proposes the usage of cloudlets to support mobile multimedia services and to adjust the resource allocation 

triggered by runtime handoffs. Concerning the handoff evaluation, the authors of [11] study the handoff conditions in 

relation to various aspects such as signal strength, bit rate, number of interactions between cloudlets and associated 

devices. Finally, [12] proposes a multi-agent-based code offloading mechanism. It adopts a reinforcement learning 

and code blocks migration in order to reduce both execution time and energy consumption of mobile devices. To the 

best of our knowledge, these papers explore the integrated management of handover operations with VM/container 

migration. However,  none of them considers the possibility of exploiting peoples’ devices as storage/VM/container 

couriers.  

 

3. Mobile Edge Computing extended through the Crowd 

We first overview the HEC architecture as well as its main components and functionalities. Then, we present some 

guidelines and engineering tradeoffs for the selection of FMEC, M2EC, and of the human couriers. 

 

3.1. The Reference Architecture of the HEC Middleware 
HEC extends the emerging MEC three-layer hierarchical architecture. In particular, we consider two types of MECs, 

namely FMEC and M2EC. By focusing on our HEC middleware at mobile devices, we distinguish between regular 

mobile devices (capable of working only as service clients) and powerful devices (which may be promoted 

dynamically to host virtualized functions and to serve as M2EC nodes). In our current implementation, we identify a 

number of powerful devices based on the hardware and software features (ie. tablets or laptops that are locally paired 

with smartphones). It is worth to notice that the evolution trend of mobile/embedded devices is such that the potential 

set of mobile nodes that can be promoted to M2EC at runtime is ever increasing. Under this respect, some interesting 

benchmarks show that also RaspberryPI boards can adequately run OpenStack++ middleware [13]. We consider that 

our HEC middleware is already installed on such nodes before starting the provisioning of services, even if more 

sophisticated dynamic mechanisms for HEC middleware download at runtime can be easily integrated. Our HEC 

middleware implementation fits a wide spectrum of heterogeneous mobile devices, with the only constraint to run 

Android (iOS version currently under development). 

 

For what concerns the MCS applications, we consider that only highly demanding or group-oriented locality-based 

MCS tasks are delegated to FMEC and M2EC nodes, possibly based on dynamic considerations (e.g., residual battery 

energy). At this stage, the MCS tasks that have been already implemented and experimented for execution at HEC 

nodes are i) video analysis for face recognition and ii) analytics on all or fused monitoring indicators over 

geographical areas of highest interest and density such as data fusion, history-based processing of temporal series.  

 

3.2. The selection of FMEC and M2EC and Human-enabled VM/Container Migration 

Our architecture is configured with a number of FMEC and M2EC. They are selected by analyzing the human 

mobility over an observation period. Concerning the FMECs, we consider those locations remaining mostly active 

during the whole day. These are locations not subject of mobility changes. To this purpose, we use the DBSCAN 
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algorithm in order to detect clusters of users roaming around the same location [6, 14]. DBSCAN returns K distinct 

clusters, we filter out some of them, in particular we restrict to k ≤ K clusters as FMECs. 

 

The M2EC selection is achieved by spotting those locations of our region becoming active only during specific time 

slots. In fact, our goal is dynamically (re)configure our cloud architecture according to the natural rhythm of a city. 

To this purpose, we analyze the human mobility only during some temporal slots. In particular, we select those slots 

characterizing the typical phases of a routinary working day. For each of the slots, we cluster together the positions 

of the users with a process similarly to the one described for the FMEC. Also for the M2EC selection, we adopted 

the  DBSCAN algorithm. It results with H clusters of which we keep the top h ≤ H. 

 

Our process allows setting the parameters k and h according to the mobility and sociality features of the mobility 

dataset considered. Specifically, a small crowded region can be provisioned with a low number of FMEC, but with a 

high number of M2EC since crowded area change quickly along the day. Conversely, in a wide depopulated area it 

could be possible to increase the number of FMEC and, at the same time, reducing the number of M2EC, since 

mobility changes slowly with the time. 

 

Once FMEC to M2EC are selected, we then consider how to move that among them. To this purpose, we consider 

humans (i.e., couriers), and their mobile devices provisioned with our HEC middleware, as the primary actors that 

can be involved into the loop. We assume that mobile devices are equipped with different kinds of network 

interfaces (short, medium and broadband) and of storage capacity. The storage allows devices to store-carry-and-

forward data among FMEC and M2EC, as well as it allows replicating data across users joining at the same time the 

same M2EC For the selection of couriers, we keep track of user mobility and prefers those users that have a more 

repetitive and predictable behavior: the more a user commutes from a FMES to a M2EC, the more he/she is a good 

courier candidate. 

 

Since not all the FMECs are connected to all M2ECs during the 24 hours, we consider the possibility of reducing the 

bandwidth in the cloud-to-FMEC direction and consequently the storage resources at FMECs. To this purpose, the 

HEC implements a load balancing policy. Such policy exploits the knowledge of the mobility and of the 

connectivity between FMECs and M2EC in order to select which VMs/containers requires to be moved move from 

the cloud to the FMECs. The load balancing strategy relies on the locality principle according to which 

VMs/containers are loaded in advance to those FMECs that are more likely to be store-and-forwarded by a courier 

toward a M2EC. 

 

Also for the sake of briefness and due to paper length limitations, further design/implementation details about our 

HEC proposal are not reported here because out of the central scope of this paper, which presented the vision and 

the main design guidelines of our innovative HEC solution. At the current stage, we are working in order to test 

these ideas through a set of experiments based on the real-world ParticipAct dataset which reproduces the mobility 

of about 170 students in the Emilia Romagna region (Italy) about 2 years [6].  

 

4. Conclusion 
This paper presented HEC, a new architecture model to ease the provisioning and to extend the coverage of traditional 
MEC approaches by bringing together the best of MEC and MCS. The cornerstone of our proposal lies in the ability 
to dynamically leverage human sociality and mobility effects to broaden the MEC coverage through the impromptu 
formation of M2ECs. Those encouraging results are pushing us to further investigate and refine our HEC model and 
we are currently exploring various related areas. On the one hand, we are working to enable the self-adaptable fine 
tuning of our HEC middleware to the different dynamics and variations of the city pulse, for instance to the different 
behaviors that might present along the year, such as working vs. vacation periods, and the week, such as working days 
vs. weekends. On the other hand, we are investigating innovative techniques in order to reduce the latency of 
downloading VMs/containers on M2EC nodes via parallelization of I/O and configuration operations. 
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1. Introduction 
In the past decade, we have witnessed Cloud Computing play as significant role for massive data storage, control, 

and computation offloading. However, the rapid proliferation of mobile applications and the Internet of Things (IoT) 

over the last few years has posed severe demands on cloud infrastructure and wireless access networks. Stringent 

requirements such as ultra-low latency, user experience continuity, and high reliability are driving the need for 

highly localized intelligence in close proximity to the end users. In light of this, Mobile Edge Computing (MEC) has 

been envisioned as the key technology to assist wireless networks with cloud computing-like capabilities in order to 

provide low-latency and context-aware services directly from the network edge. 

 

Differently from traditional cloud computing systems where remote public clouds are utilized, the MEC paradigm is 

realized via the deployment of commodity servers, referred to as the MEC servers, at the edge of the wireless access 

network. Depending on different functional splitting and density of the Base Stations (BSs), a MEC server can be 

deployed per BS or at an aggregation point serving several BSs. With the strategic deployment of these computing 

servers, MEC allows for data transfer and application execution in close proximity to the end users, substantially 

reducing end-to-end (e2e) delay and releasing the burden on backhaul network [1]. Additionally, MEC has the 

potential to empower the network with various benefits, including: (i) optimization of mobile resources by hosting 

compute-intensive applications at the network edge, (ii) pre-processing of large data before sending it (or some 

extracted features) to the cloud, and (iii) context-aware services with the help of Radio Access Network (RAN) 

information such as cell load, user locations, and radio resource allocation.  

 

In this letter, as a backdrop to identifying research questions, we briefly review recent research efforts on enabling 

MEC technologies and then discuss five key research directions. Specifically, the goals of this letter are: (i) to raise 

awareness of relevant and cutting-edge work being performed from various literature, and (ii) to identify a number 

of important research needs for future MEC systems.  

 

2. Recent Efforts in Enabling MEC Technologies 
Fueled by the promising capabilities and business opportunities, the MEC paradigm has been attracting considerable 

attention from both academia and industry. A number of deployment scenarios, service use cases, and related 

algorithms design has been proposed to exploit the potential benefits of MEC and to justify its implementation and 

deployment from both a technical and business point of view. In this section, we briefly review the recent efforts 

from both standardization and research perspectives towards enabling MEC technologies in wireless networks.  

2.1 Proofs of Concepts and Standardization Efforts 

In 2013, Nokia Networks introduced the very first real-world MEC platform [2], in which the computing platform–

Radio Applications Cloud Servers (RACS)–is fully integrated with the Flexi Multiradio BS. Saguna also introduced 

their fully virtualized MEC platform, so called Open-RAN [3], that can provide an open environment for running 

third-party MEC applications. Besides these solutions, MEC standardization is being specified by the European 

Telecommunications Standards Institute (ETSI), which recently formed a MEC Industry Specifications Group (ISG) 

to standardize and moderate the adoption of MEC within the RAN. In the introductory white paper [4], four typical 

service scenarios and their relationship to MEC have been discussed, ranging from Augmented Reality (AR) and 

intelligent video acceleration to connected cars and IoT gateway. In the MEC World Congress 2016, ETSI has 

announced six Proofs of Concept (PoCs) that were accepted by the MEC ISG, including: 

- Radio Aware Video Optimization in a Fully Virtualized Network (RAVEN); 

- Flexible IP-based Services (FLIPS); 

- Enterprise Services; 

- Healthcare–Dynamic Hospital User, IoT, and Alert Status Management; 

- Multi-Service MEC Platform for Advanced Service Delivery; 
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- Video Analytics. 

These PoCs strengthen the strategic planning and decision making of organizations, helping them identify which 

MEC solutions may be viable in the network. Also in this Congress, ETSI MEC ISG has renamed Mobile Edge 

Computing as Multi-access Edge Computing in order to reflect the growing interest in MEC from non-cellular 

operators, which takes effect starting from 2017 [5]. The technical requirements for MEC are specified in [6] to 

guarantee interoperability and to promote MEC deployment. These requirements are divided into generic 

requirements, service requirements, requirements on operation and management, and finally security, regulations 

and charging requirements. Most recently, the 3GPP has shown a growing interest in incorporating MEC into its 5G 

standard and has identified functionality supports for edge computing in a recent technical specification 

contribution [7].  

2.2 MEC Architecture and Virtualization  

In recent years, the concept of integrating cloud computing-capabilities into the wireless network edge has been 

considered in the literature under different terminologies, including Small Cell Cloud (SCC), Mobile Micro 

Cloud (MMC), Follow Me Cloud (FMC), and CONCERT [8]. The basic idea of SCC is to enhance the small cells, 

such as microcells, picocells or femtocells, with additional computation and storage capabilities so as to support 

edge computing [9]. By exploiting the Network Function Virtualization (NFV) paradigm, the cloud-enabled small 

cells can pool their computation power to provide users with services/applications having stringent latency 

requirements. Similarly, the concept of MMC introduced in [10] allows users to have instantaneous access to the 

cloud services with low latency. Differently from the SCC where the computation/storage resources are provided by 

interworking clusters of enhanced small cells, the User Equipment (UE) exploits the computation resources of a 

single MMC, which is typically connected directly to a BS. The FMC concept [11] proposes to move computing 

resources a bit further from the UEs, compared to SCC and MMC, to the core network. It aims at having the cloud 

services running at distributed data centers so as to be able to follow the UEs as they roam throughout the network. 

In all these described MEC concepts, the computing/storage resources have been fully distributed; conversely, the 

CONCERT concept proposes hierarchically placement of the resources within the network in order to flexibly and 

elastically manage the network and cloud services.  

2.3 Computation Offloading 

The benefits of computation offloading have been investigated widely in conventional Mobile Cloud 

Computing (MCC) systems. However, a large body of existing works on MCC assumed an infinite amount of 

computing resources available in a cloudlet, where offloaded tasks can be executed in negligible delay [12], [13]. 

Recently, several works have focused on exploiting the benefits of computation offloading in MEC network [14]. 

The problem of offloading scheduling was then reduced to radio resource allocation in [15], where the competition 

for radio resources is modeled as a congestion game of selfish mobile users. The problem of joint task offloading 

and resource allocation was studied in a single-user system with energy harvesting devices [16], and in a multi-cell, 

multi-user systems [17]; however, the congestion of computing resources at the MEC server was not taken into 

account. A similar problem is studied in [18] for single-server MEC systems, where the limited resources at the 

MEC server were factored in, and later on extended to multi-server MEC systems in [19]. 

2.4 Edge Caching 

The increasing demand for massive multimedia services over mobile cellular network poses great challenges on 

network capacity and backhaul links. Distributed edge caching, which can well leverage MEC paradigm, has 

therefore been recognized as a promising solution to bring popular contents closer to the users, to reduce data traffic 

going through the backhaul links as well as the time required for content delivery, and to help smoothen/regulate the 

traffic during peak hours. In general, edge caching in wireless networks has been investigated in a number of works 

(cf. [20-22] and references therein). Recently, in [23], [24], we have proposed a cooperative hierarchical caching 

paradigm in a Cloud Radio Access Network (C-RAN) where the cloud-cache is introduced as a bridging layer 

between the edge-based and core-based caching schemes. Taking into account the heterogeneity of video 

transmissions in wireless networks in terms of video quality and device capabilities, our previous work in [25] 

proposes to utilize both caching and processing capabilities at the MEC servers to satisfy users’ requests for videos 

with different bitrates. In this scheme, the collaborative caching paradigm has been extended to a new dimension 

where the MEC servers can assist each other to not only provide the requested video via backhaul links but also to 

transcode it to the desired bitrate version.  
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3. Five Key Research Directions for MEC in Wireless Networks 
Research on MEC lies at the intersection of wireless communications and cloud computing, which has resulted in 

many interesting research opportunities and challenges. The spectrum of research required to achieve the promises 

of MEC requires significant investigation along many directions. In this section, we highlight and discuss the key 

open research issues and future directions, which are categorized into five main topics as follows.  

3.1 Deployment Scenarios and Resource Management 

The key concept of MEC is to shift the cloud computing-capabilities closer to the end users in order to reduce the 

service latency and to avoid congestion in the core network. However, there has been no formal definition on what 

the MEC servers would be and where they should be deployed within the network. Such decisions involve 

investigating the site-selection problem for MEC servers where their optimal placement is coupled with the 

computational resource provisioning as well as with the deployment budget. In addition, it is critical to determine 

the required server density to cope with the service demands, which is closely related to the infrastructure 

deployment cost and marketing strategies. Finally, the deployment of MEC servers also depends on the RAN 

architecture where different functional splitting options between the BSs and the centralized processing center (such 

as in C-RAN) are specified, depending on the delay requirement and fronthaul capacity. 

3.2 Computation Caching and Offloading 

The combination of computation and storage resources at the MEC servers offers unique opportunities for caching 

of computation tasks. In this technique, the MEC server can cache several application services and their related 

database, and handle the offloaded computation from multiple users so as to enhance the user experience. 

Computation caching can help decrease the load on the access link by providing computing results to the end users 

without the need to fetch their tasks beforehand. Unlike content caching, computation caching presents several new 

challenges. First, computing tasks can be of diverse types and depend on the computing environment; while some of 

the content is cacheable for reuse by other devices, personal computing data is not cacheable and must often be 

executed in real time. Second, it is not practical to build popularity patterns locally at each server; instead, studying 

popularity distributions over larger sets of servers can provide a broader view on the popularity patterns of 

computing tasks. 

3.3 IoT Applications and Big Data Analytics 

The emerging IoT and Big Data services have changed the traditional networking paradigm where the network 

infrastructure, instead of being the dump pipe, can now process the data and generate insights. MEC resources can 

be utilized for pre-processing of massive IoT data so as to reduce bandwidth consumption, to provide network 

scalability, and to ensure a fast response to the user requests. A MEC platform can also encompass a local IoT 

gateway functionality capable of performing data aggregation and big data analytics for event reporting, smart grid, 

e-health, and smart cities. For instance, our previous work in [26] describes an autonomic edge-computing platform 

that supports deep learning for localization of epileptogenicity using multimodal rs-fMRI and EEG big data. To fully 

exploit the benefits of MEC for IoT, there needs to be significant research on how to efficiently distribute and 

manage data storage and computing, how to make edge computing collaborate with cloud computing for more 

scalable services, and how to secure the whole system.  

3.4 Mobility Management 

Mobility management is an essential feature for MEC to ensure service continuity for highly dynamic mobile users. 

For vehicular communications and automotive, integrating MEC with mobile cloud computing or vehicular cloud, 

wherein mobile or vehicle resources are utilized for communication and computation services, is a highly 

challenging issue from the service orchestration perspective. For many applications, estimating and predicting the 

movement and trajectory of users as well as personal preference information can help the MEC servers improve the 

user experience. For example, mobility prediction can be integrated with edge caching to enhance the content 

migration at the edges and caching efficiency. In addition, to achieve better user computation experience, existing 

offloading techniques can be jointly considered with mobility-aware scheduling policies at the MEC servers. This 

approach introduces a set of interesting research problems including mobility-aware online prefetching of user 

computation data, server scheduling, and fault-tolerance computation. For instance, in our previous works [27], [28], 

multi-tier distributed computing infrastructures based on MEC and Mobile Device Cloud (MDC) are proposed to 

link mobility management and pervasive computing with medical applications. 
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3.5 Security and Privacy 

Security issues might hinder the success of the MEC paradigm if not carefully considered. Unlike traditional cloud 

computing, MEC infrastructure is vulnerable to site attacks due to its distributed deployment. In addition, MEC 

requires more stringent security policies as third-party stakeholders can gain access to the platform and derive 

information regarding user proximity and network analytics. Existing centralized authentication protocols might not 

be applicable for some parts of the infrastructure that have limited connectivity to the central authentication server. 

It is also important to implement trust-management systems that are able to exchange compatible trust information 

with each other, even if they belong to different trust domains. Furthermore, as service providers want to acquire 

user information to tailor their services, there is a great challenge to the development of privacy-protection 

mechanisms that can efficiently protect users’ locations and service usage. 

 

4. Conclusion 
Mobile Edge Computing (MEC) is an emerging technology to cope with the unprecedented growth of user demands 

for access to low-latency computation and content data. This paradigm, which aims at bringing the computing and 

storage resources to the edge of mobile network, allows for the execution of delay-sensitive and context-aware 

applications in close proximity to the end users while alleviating backhaul utilization and computation at the core 

network. While research on MEC has gained its momentum, as reflected in the recent efforts reviewed in this letter, 

MEC itself is still in its nascent stage and there is a myriad of technical challenges that need to be addressed. In this 

regard, we discussed five key open research directions that we consider to be among the most important and 

challenging issues of future MEC systems.  
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Being a novel imaging technique, Light Field (LF) imaging not only conveys the intensity of the light directed from 

a scene, but also its directionality. Thus, two layers of information are presented in LF images, one being the 

angularity of approaching light rays and the other being the usual colour and luminance information. As a result, LF 

images enable several possibilities, such as image re-focussing, viewpoint adjustment, and scene depth extraction, 

which would otherwise not be possible with conventional camera shots. LF image acquisition deploys a different 

optics setup compared to conventional imaging systems, consisting of an array of multiple lenses and image sensors 

(i.e., multi-camera arrays) or special micro-lens arrays placed in compact camera systems. Owing to its complexity 

and large data volume, LF image processing and communication has attracted attention from research communities 

in computer vision and signal processing. With the more common availability of LF displays and off-the-shelf LF 

camera products, the research efforts in that area have further gone up recently. The LF technology has been in use 

for emerging applications in various domains, such as computational photography, augmented reality, light-field 

microscopy, and 3D display of objects and visual scenes in the whole field-of-view.   

Light Field communications cover an end-to-end cycle, i.e., starting from acquisition to post-processing and 

compression, then transmission and finally display rendering. While the acquisition and displaying of the LF images 

require specific hardware, mostly the modified versions of existing techniques, which are originally developed for 

conventional images, have been used for the processing and compression of LF images. Nevertheless, LF 

images/videos differ fundamentally from their traditional counterparts, thus making those techniques sub-optimal in 

most cases. In this Special Issue, authors highlight their research findings and perspectives on the different aspects 

of the LF imaging technology.  

The first contribution by Christine Guillemot and Reuben Farrugia, titled “Light field image processing: overview 

and research issues”, briefs the readers about the fundamentals of the plenoptic function, the varieties and the design 

trade-offs of the LF capturing systems. Furthermore, the authors provide us with a survey of the past and ongoing 

research works addressing various aspects, such as the compression of vast LF data, the inherent spatial and angular 

resolution trade-off, and user interactivity issues. They outline the major research questions in the field open to 

further investigation. 

The second contribution by Joao M. Santos, et. al., titled “Performance evaluation of light field pre-processing 

methods for lossless standard coding”, provides a detailed performance comparison of various raw data pre-

processing and coding standards in the context of LF images. In an exploratory study, the authors test the lossless 

compression gain of deploying different data arrangement models and colour transforms with the well-known 

standard compression standards, such as JPEG2000, JPEG-LS, and HEVC.  

In their paper titled “Towards Adaptive Light Field Video Streaming”, Peter A. Kara, et. al., give an overview of the 

issue of Quality of Experience measurement in the context of LF visualisation. Based on the authors’ research works 

in the evaluation of the LF video quality on a holographic display in relation with the field-of-view, spatial and 

angular resolutions, a new adaptive LF video streaming approach is proposed. 

Finally, in his paper titled “Light Fields for Near-eye Displays” Fu-Chung Huang sheds light on the design aspects 

of special near-eye displays for LF visualisation. Near-eye displays are of particular importance given the surging 

popularity of Virtual Reality head mounted displays. Near-eye LF displays have several advantages over traditional 

head-mounted displays, such as providing superior depth of field, more comfortable and natural viewing free from 

vergence - accommodation conflict. The author outlines several different near-eye light display technologies with a 

comparison in terms of multiple aspects including resolution, field-of-view and the form factor. 
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With this Special Issue we have no intent to present a complete picture on the state of the LF technology and the 

applications it powers. However, we hope that the presented papers provide the audience with a brief tutorial and 

valuable insight into the persisting challenges in the area, and predictions for the future research.  

Our special thanks go to all authors for their precious contributions to this Special Issue. We would also like to 

acknowledge the gracious support from the Board of MMTC Communications - Frontiers. 
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1. Introduction 

Light field (LF) imaging first appeared in the computer graphics community with the goal of photorealistic 3D 

rendering [1]. Motivated by a variety of potential applications in various domains (e.g., computational photography, 

augmented reality, light field microscopy, medical imaging, 3D robotic, particle image velocimetry), imaging from 

real light fields has recently gained in popularity, both at the research and industrial level.  

Research effort has been dedicated to the practical design of systems for capturing real-world light fields which go 

from cameras arrays [2-5] to single cameras mounted on moving gantries and plenoptic cameras [6,7] based on the 

principle of integral imaging first introduced by Lipman in [8]. The commercial availability of plenoptic cameras 

and the equipment of recent smart phones with several cameras, with a single specialized sensor, or with a wafer-

level-optics camera array [9], which can, to some extent, capture light fields, even if they are not as angularly dense 

as those captured by plenoptic cameras, has given a novel momentum to light field research.  The flow of rays 

captured by light field acquisition devices is in the form of large volumes of data retaining both spatial and angular 

information of a scene, which enables a variety of post-capture processing capabilities, such as re-focusing, 

extended focus, different viewpoint rendering and depth estimation, from a single exposure. 

While offering unprecedented opportunities for advanced image analysis, creation and editing features, real light 

fields capture poses a number of challenging problems. The data captured by light fields cameras is not only big in 

volume and of high dimension, which is an issue for storage and communication, but also overwhelming in several 

other aspects such as the need for high processing power and the angular-spatial resolution trade-off inherent to light 

field capture devices. The volume of data inherent to light fields is an issue for user interaction which requires near 

real-time processing, potentially on devices having limited computational power. Editing with a tractable complexity 

and in a consistent manner the large number of views cannot be solved with a straightforward application of now 

well-known 2D images editing algorithms. After a brief recall of the plenoptic function and of light fields capturing 

devices, this paper gives an overview of the main research directions addressing the above challenging problems.  

2. Plenoptic function and real light fields capturing devices  

Light field capturing is about sampling the plenoptic function which is a 7D function L(x,y,z,,t) describing the 

light rays emitted by a scene and received by an observer at a particular point (x,y,z) in space, following an 

orientation defined by the angles (), with a wavelength  at a given time instant t. For a static light field, the 7D 

plenoptic function can be simplified into a 4D representation called 4D light field in [10] and Lumigraph in [11], 

describing the radiance along rays by a function L(x; y; u; v) of 4 parameters at the intersection of the light rays with 

2 parallel planes, as shown in Fig.1.left. This simplification is done assuming constant radiance of a light ray from 

point to point, and given that an RGB sampling of the wavelength is performed by the color filters coupled with the 

CCD sensors.  

 
  
Fig. 1: (left) Illustration of the two planes parameterization of the 4D static (one time instant) light field; 

(right) Rendered image at one focus; and epipolar image corresponding to horizontal red line in left 

image. 
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The light field can be seen as capturing an array of viewpoints (called sub-aperture images in particular in the case 

of micro-lens based capturing devices) of the imaged scene with varying angular coordinates u and v. A photograph 

at a particular focus is computed from the 4D data by integrating the light across epipolar images. An epipolar image 

represents a 2D slice of the 4D light field (e.g. a (x,u) slice in Fig. 1.right). The epipolar image shown in Fig.1.right 

gives an observation of the light field at a constant y-value corresponding to the red line in the picture. Each vertical 

line in the epipolar image represents the light field observed at varying sub-apertures (u) of the main lens and at a 

given pixel location x. 

Camera arrays have thus been naturally designed to capture the set of views, offering a high spatial resolution for 

each view but a low angular resolution (limited set of views) hence a large baseline. Targeted applications include 

long range depth estimation, change of viewpoint and view synthesis, such as AR content capture or movie post 

production. Camera gantries have also been built in which a single camera moves along a plane and takes captures at 

regular time intervals.  

While camera arrays capture the scene from different viewpoints, hence with a large baseline, plenoptic cameras use 

an array of micro-lenses placed in front of the photosensor to separate the light rays striking each microlens into a 

small image on the photosensors pixels, and this way capture dense angular information with a small baseline.  

Plenoptic cameras are now available on the market with first generation Lytro cameras that typically target 

consumer photography via their refocusing feature, and the Raytrix cameras that instead target the industrial market 

with accurate, monocular depth estimation. Two optical designs have been considered for plenoptic cameras, the so-

called “plenoptic 1.0” design, called unfocused plenoptic camera, in which the main lens focuses the subject on the 

lenslet array [6], and the “plenoptic 2.0” design [7], also called focused plenoptic camera, in which the image plane 

of the main lens is the object plane of the lenslet array (see Fig. 2).  

 

Fig. 2: (left) plenoptic 1.0 optical design; (right) plenoptic 2.0 optical design. 

In the unfocused camera, the light emitted by one point in the 3D scene is spread over several pixel sensors of the 

raw lenslet data. Every pixel behind a lenslet corresponds to a different angle. Extracting views from the raw lenslet 

data captured by plenoptic cameras involves several processing steps [12]: devignetting which, with white images, 

aims at compensating for the loss of illumination at the periphery of the micro-lenses, color demosaicing, alignment 

of the sensor data with the micro-lens array, and converting the hexagonal sampling grid into a rectangular sampling 

grid. 

3. Compression of the large volumes of light field data 

Given their significant demand in terms of storage capacity, the problem of light field compression rapidly appeared 

as quite critical in the computer graphics community using light fields for image rendering. Early solutions 

considered for synthetic light fields were based on classical coding tools, JPEG-coding schemes [11], vector 

quantization [13], or wavelet coding [14] applied on each view of the 2D array separately. While the separate 

encoding of each view naturally allows random access to any sample of the light field, the compression factor of 

these solutions is however hardly exceeding 20. Predictive coding inspired from video compression techniques have 

then been considered for further increasing the compression factor [15], in which a few views are encoded in Intra 

while the other views are encoded as P-images where each block can be predicted from one of the neighboring Intra 

views with or without disparity compensation. Motivated by the objective of random access and progressive 

decoding, which is not enabled by predictive schemes, the authors in [16] consider instead a wavelet transform 

applied in the 4 dimensions of the light field, while a Principal Component Analysis (PCA) is used in [17]. Solutions 

for light field compression have then evolved following advances in mono-view and multi-view video compression 

(e.g. using MVC) [18].  

The emerging devices for capturing real light fields also record very large volumes of data. To take only a few 
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examples, a Lytro Illum camera captures 61 Mpixels (15×15×625×434 pixels) while a camera array, as for example 

a rig of 4×4 cameras of spatial resolution 2048×1088px captures 35 Mpixels. Each pixel of course has three color 

components represented on 8 bits. Research for compressing real light field data has evolved along two main 

directions. The first type of approaches consists in directly compressing the raw lenslet data after de-vignetting and 

demosaicing (e.g., [19-26]) and the second type of approaches compresses the views extracted from the lenslet data 

(e.g., [27-29]) or captured by a camera array.  

Most solutions proposed for directly encoding the lenslet data aim at exploiting spatial redundancy or self-similarity 

between the micro-images. The micro-image is the set of pixels behind each micro-lens and is also sometimes called 

elemental image. Spatial prediction modes have thus been proposed for unfocused cameras in [19] based on a 

concept of self-similarity compensated prediction [23][24], or using locally linear embedding techniques in [20]. Bi-

directional spatial prediction modes have also been added in HEVC for encoding elemental images captured by a 

focused 2.0 camera [25] and by an unfocused camera [26]. The authors in [22] instead partition the raw data into 

tiles which are then encoded as a pseudo-video sequence using HEVC. 

While the first category of methods only applies to light fields captured by micro-lens based plenoptic cameras, a 

second category of methods consists in encoding the set of sub-aperture images (or views) extracted from the lenslet 

images or captured by camera rigs. The authors in [27] form a pseudo-sequence by using a lozenge scanning order 

and encode this pseudo-sequence using HEVC inter-coding, while in [28] a coding order and a prediction structure 

inspired from those used in the multi-view coding (MVC) coding standard is proposed, showing significant 

performance gains compared with HEVC-Intra. In [27] and [28], inter-view correlation is exploited via motion 

estimation and compensation methods, as in video coding, whereas the authors in [29,30] use homographies and 2D 

warping instead of classical predictive coding to remove inter-view redundancy. The approach in [30] actually aims 

at reducing the dimension of the captured data via a low rank approximation of views aligned by homographies 

which are jointly optimized with the low rank model. This approach called HLRMA [30] yields, with the data set of 

the ICME 2016 challenge, an average PSNR gain of 2.24 dB compared with a direct encoding of the views as a 

video sequence scanned following a lozenge scan order starting from the central view, while the pseudo-sequence 

approach of [28] yields an average gain of 1.78 dB. 

The need for efficient compression solutions has motivated the JPEG-Pleno group to launch an initiative for 

defining a light field compression standard [31], for both data captured by plenoptic cameras and by camera arrays. 

The standardization phase is on-going with the goal of having an international standard in January 2019. 

4. Handling the spatial and angular resolution trade-off 

Plenoptic cameras and smart phones equipped with multiple camera sensors can capture both spatial and angular 

information of light rays from a single capture [6]. However, since the sensor is limited, it is difficult to have both a 

dense angular and spatial light field sampling. The angular sampling is related to the number of sensor pixels located 

behind each microlens for Plenoptic cameras while it corresponds to the number of cameras on the wafer for mobile 

devices. This trade-off between angular and spatial resolution leads to a significantly lower spatial resolution 

compared to traditional 2D cameras [6]. 

A first category of approaches consists in resampling the light field to reconstruct sub-aperture images with 

resolutions higher than the number of micro-lenses. The authors in [32] use the super-resolution discrete focal stack 

transform to super-resolve the focal stack of a light field. In the same vein, a light field reconstruction approach is 

proposed in [33], where the de-multiplexed sub-aperture images are first interpolated with barycentric interpolation 

to adapt to the hexagonal layout of the micro-lenses, and then refined using pixels of neighboring views using ray 

interpolation. The resulting light field still contains aliasing, which is unnatural. They hence use the dictionary-based 

single-image super-resolution method proposed in [34] to restore each sub-aperture image separately. 

A second category of methods exploits the depth information to increase both spatial and angular super-resolution. 

Based on the image formation model of the plenoptic camera, the authors in [35] us a depth map to estimate the 

reflectance in a Bayesian framework where a Markov Random Field prior was used to regularize the solution. The 

authors in [36] estimate disparity maps locally using epipolar plane image analysis and then use a variational model 

for the synthesis of super-resolved novel views. A patch-based approach was proposed in [37] where they model the 

light field patches using a Gaussian mixture model using disparity as prior. The spatial resolution of the 4D light 

field is then restored using linear minimum mean square estimation (LMMSE). Nevertheless, these methods rely on 

the accuracy of the disparity estimation algorithm used, which generally fail to restore reliable disparity maps in 

real-world light fields. Moreover, a significant number of occluded regions make their restoration difficult and 



 

 IEEE COMSOC MMTC Communications - Frontiers 

http://www.comsoc.org/~mmc/ 40/61 Vol.12, No.4, July 2017 

 

generally lead to blur artefacts in regions with large parallax.  

Machine learning is used in [38 - 40] to super-resolve real-world light fields of higher quality. Deep convolutional 

neural networks (DCNN) were used in [38] for both spatial and angular super-resolution. This method first employs 

a spatial DCNN to restore each sub-aperture image separately followed by another DCNN to synthesize novel views. 

The resulting sub-aperture images are incoherent across sub-aperture images since they are restored separately. Deep 

learning was used in [39] to synthesize new views from a sparse set of input views. More specifically, a cascade of 

two DCNNs is used where the first one learns the disparity while the second one learns the synthesis of novel views. 

The authors in [40] have used principal component analysis (PCA) and ridge regression (RR) to learn a linear 

mapping between low- and high-resolution patch-volumes, which are a stack of collocated 2D patches from each 

sub-aperture image. This method exploits the light field structure and restores sub-aperture images that are more 

coherent. 

 

5. Light field user interaction and editing 

User interaction and light field editing (e.g., segmentation, object removal and inpainting, colorization) now 

common with 2D images are made difficult for light fields due to the big volume of data to be processed. Besides 

the computing complexity, one difficulty resides in the fact that the edits on one view must in addition be consistent 

across views.   

Graph-cut used with Random Markov Fields (RMF) is a well-known tool for 2D image segmentation. It has thus 

been naturally considered for co-segmentation of multiple views using different models such as an appearance 

model based on color in [41] or on other cues in [42]. However, its complexity quite rapidly increases with the 

volume of data (number of views and dimension of each view). This is the reason why multi-view co-segmentation 

methods usually consider a limited number of views. In addition, with dense light fields, the baseline being much 

smaller, the views are much more correlated. Hence, label consistency can be more strongly enforced.  

The problem of dense light field segmentation has been addressed in a semi-supervised manner allowing the user to 

enter scribbles on the central view. These scribbles are used in [43] to learn a joint color and depth classifier with a 

random forest technique. The result of the classification is then regularized using a variational approach to segment 

each ray using its 4D spatial and angular neighborhood. The segmentation of 9x9 views of size 768x768 however 

takes over 5 minutes. The authors in [44] use the same structure with an anisotropic 4D neighborhood and a SVM 

classifier to learn the color model, further increasing the computational load. A graph structure merging several rays 

coming from the same scene point is proposed in [45] which allows dividing the number of nodes by around 50, 

hence significantly decreasing the computational load of the regularization (9x9 views of size 768x768 are 

segmented in 4 to 6 sec.). 

Light field editing has been essentially tackled from the angle of edits propagation in a consistent manner from one 

view to the other ones. The goal is to enable user interaction with the whole light field while entering inputs on one 

view only. A 3D voxel-based model of the scene with an associated radiance function is proposed in [46] to 

propagate pixel edits and illumination changes. Stroke-based editing is also described in [47] where the edits are 

propagated in a downsampled version of the light field to reduce the computational load.  

Object removal is a complex editing task requiring the development of inpainting techniques. While 2D image 

inpainting has been widely addressed in the literature, there are few works on light fields inpainting. A first category 

of approaches inpaint one view of the light field using a 2D method and then propagates the inpainting to the other 

views in a consistent manner. One example of such approach is described in [48] where an exemplar patch-based 

method is used for the central view. For the other views, instead of searching a best matching patch in the known 

region of the view to inpaint, the patch is searched in the first inpainted view in order to ensure a better consistency 

across views. Instead of propagating the inpainting from one view to the others, the authors in [49] describe a 4D 

patch-based method where the consistency is ensured by minimizing a 4D patch bi-directional similarity measure. 

All these methods progress patch per patch in a greedy fashion and suffer from a high computational complexity. In 

addition, they may not ensure a global coherence on the entire light field. The authors in [50] suggest instead using a 

variationnal framework to define constraints on the epipolar images with the help of disparity information raising 

other questions related to the estimation of disparity for the region to be inpainted. Despite these preliminary works, 

the problem of fast light field inpainting which would enable user interaction, with a global coherence on the entire 

light field remains a difficult problem. 
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6. Conclusion 

This paper gave a quick overview of main research trends in relation to a few critical problems in light field image 

processing. Given the very big volume of highly redundant data, even with static light fields, it became rapidly 

evident that progress in this area requires developments which go beyond a straightforward application or extension 

of well-known 2D imaging techniques. Even if most works focused on static light fields, the volume of high 

dimensional data becomes even more critical with video light fields for which the above problems remain largely 

open. 
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1. Introduction 

The concept of Light Field (LF) was first introduced by Lippman in 1908 [1], expressing the idea of capturing all the 

information conveyed by the light rays. Since those early days, worldwide research and new technological 

developments led to the production of consumer-grade LF cameras that are now available for researchers and 

consumers alike. These are mainly characterised by their ability to record not only light intensity but also the 

directionality of light-rays that reach the camera. This technology is based on a specially designed array of micro-

lenses (MLA) that is placed in front of the camera sensor [2]. As shown in Figure 4, light rays from the same point 

in the scene, but reaching the camera from different directions, correspond to different samples in the camera sensor, 

thus sampling the light field. While these sample values represent the light intensity, their spatial positions within 

the micro-image created by each micro-lens are associated with the direction of the corresponding light ray. 

Therefore, the sample array (i.e., light field image) captured by the camera encodes the light intensity reaching the 

sensor from slightly different perspectives multiplexed into different spatial positions. More details about LF 

acquisition systems can be found in [3,4,5]. 

 

Figure 4. Light-field imaging acquisition system 

Different applications of LF are mostly supported by computational methods that can be implemented as post-

processing operations such as image rendering with different focal planes, depth-of-field or viewing perspectives 

[2,6,7] and extraction of depth maps [8]. Since LF cameras capture a much larger amount of data in comparison to 

conventional cameras, the need for compression is of utmost importance. To this aim, standard image and video 

encoders have been used, but these usually fail to optimally exploit the intrinsic redundancy of LF data. 

Alternatively, in recent years, several approaches for lossy compression of LFs have been proposed, trying to exploit 

the specific characteristics of LF representation data, namely the correlation between neighbouring micro-images [9] 

and the correlation in sub-aperture images, using three-dimensional transforms [10]. For other applications, where 

the full accuracy of the originally captured LF needs to be preserved, lossless encoding must be used for the entire 

representation data.  Some LF lossless coding methods have been reported in the literature.  For instance, in [11], 

Perra encodes the non-rectified lenslet image by exploiting the correlation between micro-images, like Henlin et al, 

in [12], where the proposed method encodes the sub-aperture images extracted from the rectified lenslet data, 

exploiting inter-image correlations by applying different predictors to regions of the same depth. 

Commonly, LF cameras generate as output an RGB lenslet image. However, this image format may not be the most 

adequate format for an efficient compression. Therefore, pre-processing techniques may be used to convert the data 

to a format that enables higher compression performance of current standard encoders. In this context, this paper 

presents and analyses the use of two types of pre-processing techniques that increase the compression efficiency of 

standard lossless encoders, namely lenslet data rearrangement and colour transformation. 

The paper is organised as follows: Section 2 describes some image representation formats for encoding LF image 
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data and the use of reversible colour transformations. Section 3 presents experimental results and Section 4 

concludes the paper. 

2. Pre-processing of LF images 

2.1 LF data arrangements 

The underlying idea behind pre-processing LFs is to obtain different representation formats, which may have an 

impact on the coding efficiency. Since standard image and video encoders exploit the spatial and temporal 

correlations of neighbouring pixels, it is expected that different spatio-temporal arrangements and colour formats 

influence the performance of encoding algorithms. As mentioned above, the common output of LF cameras is 

formatted as a matrix of lenslet images, which present a regular alveolar structure of micro-images, which in turn 

form a rectangular grid of micro-images after rectification. The micro-image structure of a lenslet LF is shown in 

Figure 5. 

 

Figure 5. Rectified lenslet image and a zoomed detail from light field Friends_1 [13]. 

Since LF images include directional information about light rays, it is possible to extract different perspectives or 

views from a rectified lenslet, by selecting pixels located at the same spatial position in all micro-images. The black 

pixels located at the corners of the micro-images correspond to the black images shown in the corners of the light 

field image with all views (Figure 3). The whole set of different views form a stack of sub-aperture images. Then, 

rather than encoding the light field image as a still picture, such stack of images can be arranged as a pseudo - video 

sequence (PVS) and used as the input video of a standard video encoder. 

The coding performance is studied for three different rearrangement methods used to create pseudo-temporal 

sequences from sub-aperture images: Raster, Spiral [14] and New Spiral, as shown in Figure 6. In the New Spiral 

method, the black images are put sequentially at the end of the pseudo video sequence by following the yellow scan 

and then the red one (Figure 3c). Another possible LF representation is the Epipolar format. Epipolar Plane Images 

(EPI) [15] are defined by the cross-section of a given PVS stack. Figure 7a) represents a cross section of a PVS stack 

and Figure 7b) the corresponding epipolar image. 

   
(a) (b) (c) 

Figure 6. Representation of the used scans: (a): Raster, (b): Spiral and (c) New Spiral. 

2.2. Colour transforms 

Since natural images in RGB format present significant correlation between the three components [16], in general 

this is not the most efficient format for compression, due to the cross-component redundancy. Therefore applying 

decorrelation methods, i.e. reversible colour transforms, prior to the encoding process can improve the coding 

efficiency. There are several lossless colour transforms designed for natural images that can also be used with LF 

images. In this study, the following transforms are studied: A2 [17], LDgDb [18], LDgEb [18], RCT [19] (used in the 
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JPEG 2000 standard), RDgDb [18] and YCoCg [20] (used in the JPEG XR standard). Despite the high decorrelation 

capability of these techniques reported in the literature [18], their use in combination with standard encoders does not 

always result in higher compression efficiency. 

 

 

(a) (b) 

Figure 7. Example of a subset of EPIs extracted from the pseudo-video sequence Friends_1 using the Raster scan  [13]. 

 

3. Experimental Results and Performance Analysis 

The impact of the reversible colour transformations and LF data arrangements on the compression efficiency of 

standard lossless encoders is presented in this section. In these experiments, three lossless encoders were used, 

JPEG2000 [19], JPEG-LS [21] HEVC [22]. The ICME 2016 Grand Challenge dataset [13] was used along with 

Dansereau’s LF image processing toolbox version 0.4 (LF Toolbox v0.4) [23]. The results obtained are shown in 

Table 1, where the lower values of bpp for each encoder - data arrangement pair are underlined, and the best result 

for each data arrangement is in bold. 

Table 1. Average bitrates (bpp) for all combinations of colour transformations, data arrangements and scan pattern (for HEVC). 

Encoder Arrangement RGB A2 LDgDb LDgEb RCT RDgDb YCoCg 

JPEG2000 

Lenslet 13.21 10.31 9.95 10.08 9.92 9.99 9.97 

PVS 10.67 9.73 9.46 9.49 9.41 9.60 9.41 

EPI 10.28 9.12 8.87 8.91 8.84 8.98 8.86 

JPEG-LS 

Lenslet 10.14 8.83 8.54 8.65 8.52 8.60 8.55 

PVS 10.21 9.85 9.59 9.62 9.55 9.74 9.57 

EPI 8.87 8.39 8.16 8.20 8.13 8.27 8.17 

HEVC 

Lenslet 10.04 9.64 9.39 9.45 9.37 9.45 9.41 

PVS Raster 7.63 7.62 7.43 7.43 7.41 7.47 7.44 

PVS Spiral 7.55 7.54 7.36 7.35 7.34 7.39 7.37 

PVS New-Spiral 7.53 7.52 7.34 7.33 7.32 7.37 7.34 

EPI Raster 8.67 8.59 8.39 8.38 8.36 8.46 8.39 

EPI Spiral 8.44 8.37 8.17 8.16 8.14 8.23 8.17 

EPI New-Spiral 8.08 8.02 7.81 7.81 7.79 7.88 7.83 

For intra encoders, such as JPEG2000 and JPEG-LS, the EPI data format presents the highest compression 

efficiency, for all colour transforms. Note that in this case inter-view (inter-frame) correlation is not exploited, thus 

only intra-subaperture frame correlations are used. For the video/inter-frame encoder, the best result is obtained for 

the sub-aperture images’ stack. Regarding the colour transforms, all encoders present the highest compression 

efficiency when using the RCT transform, regardless of the data format. The results obtained show that organizing 

the data in the form of PVS produces higher compression ratios due to the higher degree of spatial correlation 

between consecutive views, which positively impacts the coding performance. It is also worth noting that the PVS 

New-Spiral scanning order might further improve the coding performance, which is justified by better data 

compaction due to aggregation of the black images at the end of the PVS. The relative gain in compression 

efficiency, when comparing the Spiral and New-Spiral scanning orders, is greater for EPI than PVS. This is due to 

the higher impact of the New Spiral scanning order on EPI coding, where the improved spatio-temporal correlation 

is better exploited. In the work presented in [18], the authors describe a similar study for natural images, which 

shows that, in general, the RDgDb transform has higher impact in the compression performance. In the same work, 

the compression efficiency of RCT is slightly lower than the RDgDb transform, i.e., a difference lower than 0.06bpp.  
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However, in the case of LFs, the results in Table 1 show that RCT yields better results than RDgDb, up to 0.19bpp. 

This suggests that, even for different data arrangements, LF lossless coding does not present the same behaviour as 

classic 2D images. Thus, this may be an open topic for further research in order to find better reversible colour 

transformations for LF coding. 

4. Conclusion 

The efficient compression of Light Field information is currently under active research by the image and video 

coding and communications community. This paper provided a review and exploratory study on the use of pre-

processing techniques for LF lossless encoding, namely data arrangement and colour transformations and their 

impact on the compression efficiency of standard encoders. The results presented in this paper clearly show that the 

commonly used RGB format does not result in the best compression performance for the standard encoder. It is also 

shown that lossless coding using a single light field image (i.e., lenslet format) yields worse performance than 

coding the same data arranged as a PVS of sub-aperture images (i.e., video encoding). Considering both types of 

pre-processing and the different standard encoders, the best results were obtained using an HEVC encoder together 

with the RCT transform and the LF data arranged as a PVS of sub-aperture images. 
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1. Introduction 

Light field technology at the time of this paper can be considered to be one of the hottest topics in the research area 

of future 3D visualization. We emphasize the term “future”; while virtual reality (VR) has already entered the 

consumer market and it is widely commercially available with booming content and services, light field displays are 

still quite far from becoming widespread in our everyday lives. It needs to be noted that, although they are not yet 

present in the consumer market, they are indeed commercially available, as certain horizontal-only parallax (HOP) 

displays can be purchased, and their usage is spreading in the industry. 

The sheer fact that no additional viewing equipment is required in order to experience the immersive visual content 

in 3D makes it desirable from the perspective of the users. At the end of the day, it is the Quality of Experience 

(QoE) that determines the true “value” of the systems, products and services, and the failure to satisfy the users can 

result in the termination of entire technologies (i.e., the impending fate of stereoscopic 3D televisions). The QoE of 

the glasses-free, naked-eye light field visualization is not only a challenge to assess due to specific visual 

phenomena that do not apply to other forms of visualization, but also because the corresponding subjective quality 

evaluation techniques are not yet standardized. 

However, QoE research is already active in the field; QoE studies are being published, some of which one day might 

be looked back as pioneering work for the perceived quality of light field visualization. The majority of these studies 

has been and is being carried out on Holografika’s HoloVizio displays, as these are currently the only commercially 

available light field displays. For example, the work of Tamboli et al. [1] and Adhikarla et al. [2] used the 

HoloVizio HV721RC light field display [3] for their studies, while the tests of Dricot et al. [4] and Subbareddy et al. 

[5] were carried out on the HoloVizio C80 cinema system [6]. It is common in most studies that visual stimuli are 

created by the researchers themselves – particularly designed for the selected display – either by capturing a scene 

via camera(s) or by generating virtual stimuli via rendering [7]. 

Even though we are far from the entry of light field displays to the consumer market, there are already efforts 

towards light field streaming. It is of course important to differentiate between the general streaming of a static 

scene [8] [9] and actual video streaming [10] [11]. Solutions which allow the user to access a portion of a light field 

along a chosen trajectory is known as interactive light field streaming [12] [13], which are motivated by the massive 

data requirements of light field visualization and intend to minimize the necessary transmission rate. Indeed, a single 

static scene can already reach a data size of several hundred MB before conversion, depending vastly on the Field of 

View (FOV). As a static scene can be practically considered to be a video frame, it is not difficult to calculate that 

the size of a 90-minute video with 60 frames per second can be far over a hundred PB. 

Compression can most certainly reduce the data size; however, even after compressing the light field, the data to be 

transmitted is simply immense. Besides compression, data could be reduced by the degradation of certain parameters 

of the light field at hand. It is sufficient to think about conventional 2D adaptive video streaming, where a lower 

bandwidth is compensated by video frames in smaller spatial resolutions in order to avoid serious interruptions in 

video playback, such as rebuffering events. 

In this paper, we give an overview of the QoE researches we have performed in light field visualization, and based 

on our prior and current findings, we propose the fundamentals of a novel protocol for adaptive light field streaming. 

The aim of the protocol is to enable QoE-centric playback with fewer interruptions, while taking into consideration 

the aspects of perceived visualization quality, in order to construct efficient and user-friendly future light field video 

streaming services. 

The remainder of the paper is structured as follows: Section 2 briefly describes our related research in the perceived 

quality of light field visualization. Section 3 introduces our proposal for adaptive light field video streaming. The 

paper is concluded by Section 4. 
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2. Research on the QoE of Light Field Visualization 

In case of light field visualization, the angle measured from the display’s perspective in which the content can be 

observed is the FOV, which is not to be confused with the FOV of other visualization technologies, where is it 

observer-centric. Evidently, the bigger the FOV, the more data is required, if all other parameters – such as the 

density of source views – are fixed. Light field displays vary in FOV; while some only support 45 degrees [6] [14] 

or 70 degrees [3], having a full-horizontal 180-degree FOV is also practically achievable [15]. For this wide-FOV 

display, the HoloVizio 80WLT [15], we carried out a subjective assessment research [16], where test participants 

had to evaluate different FOVs. As the display had a fixed FOV and was not recalibrated between test cases, we 

used the rendered test stimuli to implement the different FOV values, ranging from 15 degrees to 180 degrees. For 

example, the test case with a 90-degree FOV had its corresponding source views outside the FOV (45 degrees from 

the left and the right) replaced with the background color of the stimuli, thus the stimuli were only visible inside the 

FOV. The 12 selected FOV values (15, 30, 45 etc.) were investigated for general acceptance, willingness to use and 

willingness to pay (WTP). Our results indicate that no significant differentiation can be made over 135 degrees, thus 

a larger FOV does not come with added value. However, this does not imply that light field visualization above this 

extent is pointless; e.g., in an exhibition use case scenario, where a multitude of human observers wish to view the 

3D content simultaneously, having a larger FOV is perfectly valid. For a home entertainment use case scenario, 

where the content is streamed over the network, providing a 135-degree FOV instead of a 180-degree one induces 

25% of data reduction, while still satisfying the user’s needs. 

Similarly to 2D visualization, the spatial resolution of the source data set fundamentally affects the size of the data 

to be transmitted. However, during light field visualization, light rays hit irregular positions on the holographic 

screen, eliminating the concept of pixels, yet this concept still applies to the source data, i.e., the discrete views of a 

rendered scene that are to be converted. Due to the properties of light propagation, where light rays are emitted from 

the optical engine array of either a back-projection or front-projection system, lower source spatial resolution 

manifests in blur instead of pixelation. In our research [17], we compared spatial resolutions up to 4K Ultra HD, by 

directly rendering stimuli in the given resolutions. The paired comparisons were made using a 5-point Degradation 

Category Rating (DCR) [18] scale, which collected subjective data on the perceivable differences and also on the 

dissatisfaction evoked by the quality implications of lower resolutions. We found that test participants were unable 

to distinguish the highest resolutions, and more importantly, that even very low resolutions could be acceptable, in 

the sense that their quality degradations were deemed only “slightly annoying” compared to the highest available 

resolutions. 

Unlike multi-view autostereoscopic 3D displays, where the content horizontally repeats itself in a small angle inside 

the FOV, light field displays utilize the entire FOV, which means that the content can be seen from genuinely 

different angles inside the FOV, depending where the observer is located, and thus the number of simultaneous 

viewers is not limited by the number of so-called “sweet points”. However, it is not enough to have a sufficiently 

large FOV in which the content can be observed in an angular-dependent manner. The immersive 3D experience 

comes from the continuous horizontal motion parallax. This means that during the sideways transition of the 

observer, the parallax effect is smooth, and there are no discrete views visible. This requires a certain light ray 

density, which is referred to as angular resolution. It is important to differentiate the angular resolution of the display 

and the content. The display’s angular resolution is a given fix value, determined by the layout and parameters of the 

optical engines of the system [19]. The angular resolution of the content is calculated from the number of source 

views (that are to be converted) over the size of the FOV. If the source content angular resolution is not high enough, 

light field visualization will suffer the crosstalk effect and discrete image borders might appear as well. The higher 

the angular resolution is, the smoother the horizontal parallax is, but also the higher the transmission rate 

requirement is; more source views mean more data. Therefore, it is important to provide a sufficiently high angular 

resolution in order to have an excellent user experience, while maintaining a supportable total data size. To 

investigate the thresholds of parallax perception, we conducted a series of measurements that aimed at the reduction 

of angular resolution. We rendered stimuli in different angular resolutions, and displayed them on the HoloVizio 

C80 cinema system [6] during quality assessment [20]. The display was calibrated to a 45-degree FOV, and the 

number of source views ranged from 15 to 150. As angular resolution is the ratio of source views and FOV, e.g., the 

test condition with 90 views corresponded to 2 views per degree; in the literature, referring to this extent as an 

angular resolution of 0.5 is also common. The findings show the strong correlation between the perceived visual 

quality and angular resolution, and point out that an angular resolution of 1 view per degree or lower is not 

acceptable. 
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Horizontal motion parallax refers to the sideways motion of the observer; however, no actual physical motion is 

required to experience the parallax effect. If the observer is in a fixed position – either standing or sitting – there is 

always a natural movement of the head. If the head of the observer is somehow perfectly fixed, the parallax effect 

still applies because of the two eyes; in fact, even in case of a single eye, the movement of the eye alone is enough to 

perceive the horizontal parallax of light field displays. Yet it needs to be noted that the smooth, continuous 

horizontal motion parallax during the sideways movement of the observer comes with a different visual experience, 

compared to the scenario of a fixed-position observer. Our QoE research that involved observers with static viewing 

locations supports the hypothesis that the lack of observer movement can increase tolerance towards angular 

resolution reduction [21]. This is particularly relevant if we consider a use case scenario which does not enable user 

movement, such as a cinema [22]. Exhaustive comparisons are being carried out in order to reinforce our findings 

and conclusions, and to determine precise threshold level differences. 

The angular resolution of the source content can be increased in certain ways. One approach is to apply light field 

reconstruction to the data set, but depending on the algorithm used and the input of the method, the introduced visual 

artifacts can impact perceived quality more than the low angular resolution, although it may also improve contrast, 

from which QoE can benefit [23]. Interpolation techniques create intermediate views between the existing ones, 

through which the total number of views and thus angular resolution can be increased. We conducted a subjective 

quality assessment test [24] where participants had to compare interpolated data sets (interpolation based on 

disparity and sweeping planes) with their inputs (data sets with low angular resolution) and the corresponding 

ground truths (directly rendered in high angular resolution), using a 7-point comparison scale [25]. With an input of 

1 view per degree, both techniques performed notably better than their inputs, boosting QoE through a significantly 

higher angular resolution. For lower inputs (e.g., 10 source views), interpolation based on disparity could not benefit 

the perceived quality, unlike the sweeping planes approach. 

3. Proposed Novel Protocol 

According to the best knowledge of the authors, this paper is the first contribution in the literature on the adaptive 

streaming of light field video content. The proposed novel protocol is described on the level of fundamental 

operation, but precise parametrization is not given as the corresponding researches are currently being carried out. 

The full protocol with detailed synchronization of parameters (matching spatial and angular resolution values) is yet 

to be published. 

The core of the proposed adaptive light field streaming solution is to store different quality representations of the 

content and provide what is suitable for the available bandwidth, just as in case of conventional 2D streaming [26]. 

However, the main difference here is that not only spatial resolution, but angular resolution is considered as well; 

insufficient bandwidth would result in the reduction of angular resolution to a tolerable extent. What is particularly 

beneficial regarding the protocol is how spatial and angular resolutions affect each other; content with a given lower 

angular resolution can be just as well or even better tolerated when the spatial resolution is also lower. This 

hypothesis originates from the perceptual phenomenon of blurred light field visualization at low spatial resolution; 

such blur can reduce the visual degradations of low angular resolution, particularly the discrete image borders. The 

results of the related subjective quality assessments are yet to be disseminated. 

The protocol is designed for unconverted light field data. It does not apply to converted content, as the data has fixed 

spatial and angular resolution after conversion, which is always the same for a given light field display regardless of 

content parameters. Conversion is performed real-time, thus it is feasible to send unconverted data over the network 

for streaming purposes. In case the server knows the parameters of the display, converted data can be transmitted 

and conversion at the client side can be skipped. However, if the parameters of the unconverted data – e.g., spatial 

resolution – are lower than the capabilities of the display, the converted data is likely to be larger in size, thus it is 

more cost-effective to transmit the unconverted content. 

The light field display’s FOV and interpolation techniques are not considered by the proposed protocol. Sending 

light field data for only a portion of the FOV that is being utilized can significantly reduce the transmission rate, but 

it requires real-time information on the observer’s (or observers’) location. Such systems are feasible; however, the 

initial protocol is dedicated to regular display solutions and does not rely on user tracking. Interpolation techniques 

could greatly benefit transmission solutions, as sparse data sets could be interpolated into content with high angular 

resolution. Directly involving interpolation in adaptive or any kind of streaming is unfeasible at the time of this 

paper, as the computational requirements of such techniques are far too high to enable a run time that is suitable for 

real-time solutions. As offline-only techniques, they can improve the QoE, and could actually be used on the server 

side when preparing the different quality representations. 
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Figure 1. Dynamic adaptive light field streaming over the network. 

 

Figure 2. Quality switching between segments with different quality representations. 

Figure 1 shows an example of streaming different quality representations. In this scenario, Q1 is a high-quality 

segment, while Q2 represents low quality parameters (spatial and angular resolution). They are requested according 

to the available bandwidth. Let us assume that both clients have the same light field display system. In this case, 

both representations get converted on the cluster nodes to the same spatial and angular resolutions (after which they 

are no longer sets of discrete images), based on the capabilities and number of the optical engines, respectively. 

However, the outputs of conversion will differ, according to their inputs; Q1’ will have a higher visual quality than 

Q2’. Again, the outputs of the converters will be identical in data size regardless of the quality of the inputs, but the 

video streaming segments, which are to be transmitted over the access network, are different in size. Streaming over 

time can be performed similarly to conventional 2D streaming, as shown in Figure 2. Yet there are still studies to be 

carried out regarding the impact of quality switching parameters (number of switching events in a given period, 

quality level durations, switching frequency etc.) on the QoE, in order for the users to actually benefit from adaptive 

light field video streaming. 
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4. Conclusion 

The paper presented an overview of the researches we performed on the perceived visual quality of light field 

displays, and based on our findings, we proposed a novel protocol for adaptive light field streaming. By dynamically 

switching between different representations of quality (composed of combinations of different spatial and angular 

resolution values), based on the available bandwidth, the number and duration of interruptions in light field 

streaming could be decreased. Our current and future works in the topic include the effect of spatial and angular 

resolution reduction on perceived quality, tolerable rebuffering events and quality switching. 
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1. Introduction 

The most important requirement to make any near-eye display successful is to provide a comfortable visual 

experience. This requirement has many boxes to check: having high resolution and wide field of view, being 

lightweight, having small form factor, and supporting focus cue. Like 3D TVs and movies, near-eye displays also 

need to solve the vergence and accommodation conflicts. In current Virtual Reality (VR) displays, the user fixates 

his focus on the fixed focal plane, and the disparity in the pre-processed content drives the eye to verge and creates a 

3D sensation. This is particularly challenging for Augmented Reality (AR) as the virtual content needs to match the 

real-world object at arbitrary depth, and the eye needs to constantly switch its focus between the real and the virtual, 

and oftentimes causes a fatigue viewing. Using a light field display provides an opportunity to fix the problem; the 

extended Depth of Field (DoF) enables the virtual content to be displayed at the correct depth, allowing for a 

comfortable viewing experience. Additionally, unlike the conventional 2D displays, light field displays have the 

ability to check many boxes of these abovementioned requirements, and we will describe how to navigate the design 

space that uses light fields. 

 

2. Related Work 

A light field 𝑙(𝐱, 𝐮)  describes the 4-dimensional arrangement and the distribution of light in free space using 

geometric optics, and is expressed in both space 𝐱 ∈ 𝑅2 and angle 𝐮 ∈ 𝑅2; a light field display is responsible for 

bringing such arrangement of light to the eye as if the light field is emitted from the real-world object. Light field 

can be captured using light field camera or can be rendered and synthesized using Computer Generated Imagery. 

While there have been many far-field TV-like light field displays, putting it to near-eye creates a new era of research. 

There are many different implementations of light field displays, e.g. multilayer display (gaze contingent varifocal 

displays and multifocal displays), holographic displays, MicroLens Array (MLA)-based light field, and compressive 

attenuation-based light field. A multilayer-based multi-focal display (Lee et al. [10]) approximates the light field by 

only presenting the light at discrete locations and depths. The Fourier analysis (Narain et al. [9]) shows that the 

configuration is equivalent to a sparsely sampled Radon Transform in Computational Tomography. With dense 

enough spacing, the display is capable of fooling the eye into believing true 3D. On the other hand, a gaze 

contingent display (Padmanaban et al. [12]) adjusts the optical virtual plane of the display with respect to the user’s 

gaze and focusing. Although the display allows the eye to truly focus onto the correct depth, objects’ depth in the 

periphery is not faithfully preserved. A holographic display emits a high-quality light field truly representing the 

real-world, but it is expensive to compute and is limited in field of view, the eye box, and eye-relief, making it 

unsuitable for near-eye display. Both MLA-based and compressive light field offer great accuracy to approximate 

the near-eye light field, however, there are many constraints making one favorable to the other, and generally trade-

offs are made to satisfy certain design needs. In the following sections, we will describe three configurations to 

approximate the near eye light field. 

 

2.1 MLA-based Near-eye Light Field Display 

Integral imaging based on Microlens Arrays (MLA) (Lanman and Luebke [3]) and Parallax Barrier based on pinhole 

array (Aksit et al. [1]) are effective and simple methods to create a near-eye light field display. Similar to light field 

camera, this type of light field display trades the spatial resolution for the angular resolution. Taking the integral 

imaging as an example, each microlens magnifies its underlying elemental image at the virtual plane, as shown in 

Figure 8. Multiple magnified virtual elemental images coming from many microlenses overlap on top of each other, 

and the optical setup creates a magnified virtual light field display. Since each point on the virtual image maps to 

multiple points on different elemental images, several rays are created connecting the pixel on the virtual image to 

its corresponding pixels on the elemental images. The number of rays determines the degrees of freedom to control 

the angular variations on the virtual image, and this capability is commonly referred as the depth of field of the light 

field display (Wetzstein et al. [7]).  



 

IEEE COMSOC MMTC Communications - Frontiers 

http://www.comsoc.org/~mmc/ 57/61 Vol.12, No.4, July 2017 

 

 

Figure 8: Near-eye light field display using Integral Imaging. (Left): Overlapped virtual elemental images 

create light fields at the magnified virtual image plane. The extended depth of field from this virtual light 

field allows for a continuous focus cue and avoids vergence-accommodation conflict. However, significant 

spatial resolution is traded for angular resolution. (Right): Short focal length of the microlens also allows for 

a thin and lightweight near-eye display, and the programmable remapping of light rays allows the user to see 

the near-eye display without wearing another corrective eyeglasses. 

Viewing within the depth of field of the display allows for a continuous focus cue and supports accommodation; 

vergence-accommodation conflict is avoided with this setup.  The short focal length of the microlens also enables a 

thin and lightweight near-eye display.  

The second advantage of light-field near-eye displays is to provide a personalized vision correction (Huang et al. 

[5]). Since the light field allows a programmable remapping of the rays, inversely mapping the individualized 

aberration to pre-distort the target light field allows the user to wear the near-eye display without additional 

corrective eyeglasses. All these capabilities are achieved via software rather than optics. 

The near-eye light field display, like many light field cameras, has one serious drawback that the display achieves 

the angular manipulation by sacrificing the spatial resolution to a direction against where the display industry heads 

to. In the near-eye light field, a 102: 1 resolution reduction trade-off is made. 

 

2.2. Pin Light Display 

An integral imaging based near eye light field display also makes the application to augmented reality challenging; 

using a beam splitter expands the form factor significantly to relay the optics for see-through capability. Maimone et 

al. [4] utilize a defocused diffused pin-point light source modulated by a transmissive LCD to “paint” the content 

onto the retina; the optical setup is equivalent to have a mini laser scanning projector in front of the eye. 

To minimize the light engine, Maimone et al. etch a sparse set of diffusive pin-points on an acrylic glass, as shown 

in Figure 9 (top-right). The entire glasses is only a few millimeters thick, which is ideal for augmented reality 

glasses. The display has wide field of view and its projected image is invariant to accommodation. The wide field of 

view (≥ 100∘) is easily achieved by tiling the diffusive pin-points painting to a wider extent of the retina. Since each 

pixel on the retina is painted by only a single ray, the focusing of light and the retinal blur is non-existent: the target 

image remains sharp in all accommodation states. Although changing the focal length of the eye also changes the 

refractive power and thus the optical paths, Maimone et al. show that the magnification only changes 3% of the 

original size. 

The pin light display assumes a precise knowledge of the eye location, thus allowing for a very small eye box. The 

authors propose two solutions to the inconvenience: using eye tracking or light field. Eye tracking has been shown to 

be practical (250𝐻𝑧) to reduce the computation cost by foveating a high-resolution rendering to the fovea and a low-

resolution content to the periphery. A precise eye tracking also helps to reduce the complexity in the optical setup of 

the near-eye display. When eye tracking is not available, the rendering requires a wider eye box within which the 

eye can move freely, as shown in Figure 10 (left), and the optical setup needs modification. Again, significant 
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resolution is sacrificed to enable a near-eye light field with wider eye box.  

 

 

Figure 9: Pin light displays. (Left): The incoming edge light is injected to the wave guide and is diffused by 

the pin-point and exits toward the eye, seen as a defocused circle (top-right). When the circle passed through 

a spatial light modulator, e.g. a transmissive LCD, color intensities are attached to the ray and paint the 

retina. The system allows for thin and lightweight AR glasses (bottom-right). The image is sharp across all 

focusing distances and is invariant to accommodation (< 3% variations) due to the retinal painting nature.  

To support a near-eye light field, many trade-offs need to be made, but the spatial resolution is an indispensable 

requirement for any display. In the next section, we show another dimension where a large form factor and content 

fidelity is traded for higher spatial resolution and focus cue to avoid vergence-accommodation conflict. 

 

2.3. Attenuation-based Multilayer Light Field Stereoscope 

Only considering the near-eye case, the light field in front of the pupil is highly compressible. The angular variations 

mainly from the intra-ocular occlusion are critical in monocular depth perception (Zannoli et al. [6]). Optically 

compressing light field has been shown by Wetzstein et al. [7] and Maimone and Fuchs [11] with stacked layers of 

attenuating transmissive LCDs that form a multiplicative tensor field. Huang et al. [5] show that two layers of LCDs 

are sufficient enough to approximate a near-eye light field with only rank-1 reconstruction without temporal 

multiplexing, which is also critical for near eye displays to reduce the motion blur. 

To compress the light field using two-layer optical setup, we consider the optimal reconstruction: 

𝐚𝐫𝐠𝐦𝐢𝐧{𝑡1,𝑡2} = ‖𝑙(𝐱, 𝐮) − 𝑡1(𝐱)𝑡2 (𝐱 −
𝐮−𝐱

𝑑𝑒
)‖

2

,   (1) 

where 𝑑𝑒 denotes the eye relief from the eye to the display, and we assume the distance between the layers 𝑡1 and 𝑡2 

is 1. Detailed derivation and solution can be found in Huang et al. [5] and Wetzstein et al. [7].  

Although the display still requires a pair of magnifying glasses, it also allows for a wide field of view just like any 

traditional virtual reality stereoscope and supports a large eye box; it requires little modification to the traditional 

head-mounted display by only adding a second LCD panel. However, the display form factor remains large and the 

spatial resolution is also subject to the diffraction limit beyond 1080p resolution with 50 𝜇𝑚 due to the pixelated 

structure in the front modulation panel.  

Multiplicative multilayer light field displays offer a few advantages over additive multilayer displays (Narain et. al.  

[9], Lee et. al. [10]). First, intra-ocular occlusion is better preserved, as analyzed by Huang et al. [5], and this 

monocular intra-ocular presentation is critical to depth perception (Zannoli et al. [6]). Second, additive multilayer 

displays require temporal multiplexing between layers, and modern displays are not fast enough to support more 

than three depths. However, additive multilayer displays are not constrained by the diffraction limits found in 

multiplicative displays. To the manufacturers and content developers, these constraints and trade-offs need to be 
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considered carefully to allow for a comfortable visual experience. We summarize the trade-offs in the next section. 

 

Figure 10: Light Field Stereoscope. Multiplicative two-layer transmissive LCD displays generate a 

compressed light field. Each shifted multiplication in perspective reconstructs a given input view across the 

eye box. The optimized transmissive layers are calculated and shown in bottom right. Although the display 

reconstructs a well-approximated light field, the hardware does not support a lightweight and thin form 

factor, as shown on the top right. 

 

3. Design Constraints and Trade-off Analysis 

Near-eye displays are typically constrained by many factors and usually trade some features for others. In Table 1, 

we compare many different types of near eye displays with different levels of light field approximation. Specifically, 

we compare their spatial resolution, Field of View (FoV), eye box, Depth of Field (DoF), requirement for eye-

tracking, exactness of 3D representation, and display form factor. We note that making display form factor thin and 

lightweight is a fundamental challenge that typically requires great sacrifices in other dimensions, and among which 

the spatial resolution is the most important to preserve in the trade-off space. An extended DoF enables continuous 

focus cue and allows the eye to accommodate to the desired depth, avoiding the vergence-accommodation conflict 

problem and improve the visual experience.   

 Resolution FoV Eye Box DoF Eye Tracking 3D Form 

Factor 
Traditional 2D Very High Wide Wide No No No Large 

Integral Imaging Light 

Field 

Low Narrow Moderate Yes No Real Thin 

Pin Light Low Wide Small No Yes No Thin 

Multiplicative Multilayer High Wide Moderate Yes No Approx. Large 

Additive Multilayer Very High Wide Small Moderate Yes 2.5D Large 

Table 1: Design constraints and trade-off analysis 

 

4. Conclusion 

In this paper, we show a few light field implementations for near eye displays. In particular, two of the described 

methods sacrifice the resolution for a lightweight and thin form factor, and a method exploits the compressive nature 

of near-eye light field to provide extended depth of field.  

There are still emerging technologies like Computer Generated Hologram or holographic light field displays in the 

horizon and this could potentially break more design constraints like the resolution limit, form factor, and provide 
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extended depth of field by making diffraction our friend. To conclude, it is an exciting time for near-eye displays 

and also to witness many different technologies converging together to solve hard problems. 
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