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Message from MMTC Chair 
 

Dear MMTC colleagues: 

 

November is always a special month! It is the month that reminds us that we are approaching the end of the 

year, fall season with its colorful trees and cold breeze, and that a GLOBECOM conference is coming soon!  If 

you plan to attend this year conference in Austin, then I hope to meet you there! 

 

It is a great honor to continue to be part of the IEEE ComSoc MMTC team. As the elected North America 

Vice-Chair for 2014-2016, I am excited to get the chance to work with MMTC leadership team to continue our 

mission of providing great value to our colleagues, from both academia and industry, focusing on multimedia 

communication technologies. 

 

In the September issue of the E-Letter, my colleague Liang Zhou, the Asia Vice-Chair of MMTC has 

emphasized the importance of the Interest Groups (IGs) as the catalyst for the success of our technical 

committee to effectively reaching out to the community of multimedia communication researchers and 

engineers. 

 

One of my main goals in the coming months is to focus on increasing the level of participation of colleagues 

from industry in all activities of MMTC, with emphasis on North America. This includes submitting papers to 

E-Letter and other ComSoc conferences/publications, sponsorship of events, and sharing industry experience 

on developing innovative multimedia communication products. This effort will be coordinated with the IGs 

chairs and the MMTC leadership team. 

 

We always welcome your feedback on how we can improve the operation of MMTC. Your active participation 

will strengthen the reach and impact of the technical committee.   

 

I look forward to another fruitful year in 2015!  

 

 

 

 
 
Khaled El-Maleh 

North America Vice-Chair, IEEE ComSoc Multimedia Communications Technical Committee 

 

 

 



IEEE COMSOC MMTC E-Letter 

http://www.comsoc.org/~mmc 4/59       Vol.9, No.6, November 2014 
 

EMERGING TOPICS: SPECIAL ISSUE ON MASSIVE MIMO FOR 5G CELLULAR 

SYSTEMS 

Guest Editors: Lingjia Liu
1
 and Guosen Yue

2
 

 
1
University of Kansas (KU), Lawrence, KS, USA, 2Broadcom Corporation, Matawan, NJ, USA 

lingjialiu@ittc.ku.edu ,  guosenyue@gmail.com

  

Cellular communications have experienced an 

unprecedented growth-rate of mobile data traffic due to 

the rapid introduction of various connected mobile 

devices and excessively data-hungry applications run 

on those devices. According to the International 

Telecommunication Union (ITU), the total number of 

mobile cellular subscriptions is fast approaching the 

total number of the people living on earth, and is 

expected to reach 7 billion by the end of 2014, 

corresponding to a penetration rate of 96%.  

To cater for this demand, many advanced physical 

layer techniques have been developed, e.g., multiple-

input-multiple-output (MIMO) with orthogonal 

frequency division multiplexing (OFDM). However, 

with linear throughput improvement but the 

exponential growth on the data traffic, the gap between 

the demand and supply has been increasingly widened. 

To solve the problem, the next technology we could 

resort to is massive MIMO (a.k.a. large-scale MIMO, 

full-dimension MIMO, or hyper MIMO), which 

significantly increases the system capacity by 

employing a large number of antennas at the base 

station. As an emerging and promising technology, 

massive MIMO also enjoys many advantages such as 

low-power, robust transmissions, simplified transceiver 

design, and simplified multiple access layer. 

This special issue of E-Letter focuses on the recent 

progresses of massive MIMO systems. It is the great 

honor of us to have seven invited contributions from 

both academia and industry to discuss various 

aspects/issues of massive MIMO/full-dimension 

MIMO, report their ideas/solutions for attacking those 

issues, and share their latest results.  

The first letter with the title of “Full-dimension MIMO 

Cellular Systems Realizing Potential of Massive-

MIMO” is written by Yang, Md Saifur, and Young-

Han from Samsung Research America. Currently, 

Samsung is leading the work of full-dimension MIMO 

(FD-MIMO) within 3GPP community for Rel-12 LTE-

Advanced systems. This letter gives a systematic 

overview of Full-Dimension MIMO (FD-MIMO) 

including design challenges, channel knowledge 

acquisition, and system level evaluations.  

“3-Dimensional Channel Characteristics on Active 2-

Dimensional Antenna Array System” is contributed by 

Hyoungju, Choelkyu, Hoondong, Young-Han, and 

Younsun from DMC R&D Center from Samsung 

Electronics. 3D massive MIMO/FD-MIMO is a 

paradigm shift from the conventional 2D MIMO 

systems to a 3D system. Accordingly, channel 

modeling becomes a critical issue. This letter presents a 

comprehensive modeling of the underlying 3D 

stochastic channel.   

The third letter is contributed by Rubayet (University 

of Kansas), Lingjia (University of Kansas), and Charlie 

(Samsung Research America) with the title of “On the 

Channel Estimation for 3D Massive MIMO Systems”. 

In this article, various channel estimation methods 

including channel transfer function estimation and 

channel estimation based on parametric channel 

models (direction-of-arrival and direction-of-departure 

estimations) are discussed for 3D massive MIMO/FD-

MIMO systems. 3D beam-forming and impacts of 

channel estimation are also illustrated. 

The fourth letter with the title of “On Channel 

Acquisition for Massive MIMO System” is written by 

Runhua, Qiubin, Hui, Rakesh, and Shaohui from China 

Academy of Telecommunication Technology (CATT). 

This letter studies channel knowledge acquisition for 

massive MIMO system in LTE-Advanced. For 

deployment scenarios where UL/DL reciprocity holds 

(e.g. TDD), the DL channel can be inferred from UL 

measurement, allowing greater beam-forming 

flexibility, reduced system overhead, and lower UE 

complexity. For scenarios without UL/DL reciprocity 

(e.g. FDD), a two-dimension feedback mechanism is 

introduced to take advantage of both the elevation and 

azimuth degrees of freedom.  

 “Exploiting Adaptive Downtilt and Vertical Sectori-

zation in LTE Advanced Networks using Active 

Antenna Systems” is contributed by Meilong, Moon-il, 

Ananth, Mohsen, and Janet from InterDigital. The 

letter showed that adaptive downtilt and vertical 

sectorization are promising techniques for 3D massive 

MIMO/FD-MIMO systems. When elevation degrees of 

freedom is utilized, the evaluation presented in the 

letter showed that adaptive downtilt achieves up to 11% 

cell edge and 5% cell average spectral efficiency gain 

compared to the baseline system with a fixed downtilt. 

This result provides strong evidence on utilizing 
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elevation degrees of freedom for 3D massive 

MIMO/FD-MIMO systems. 

Starting from the sixth letter, we begin to look at 

networking related issues for massive MIMO/FD-

MIMO systems. To be specific, the sixth letter is 

contributed by Yi from Auburn University, Guosen 

from Broadcom, and Shiwen from Auburn University 

with the title of “User Grouping and Load Balancing 

for FDD Massive MIMO Systems”. This paper studies 

user grouping and scheduling problems based on a 

two-stage precoding framework for FDD massive 

MIMO systems. The weighted likelihood similarity 

measure and hierarchical clustering for user grouping 

are proposed. A dynamic user scheduling scheme and a 

user grouping algorithm to achieve load balancing and 

user fairness for FDD massive MIMO systems are 

introduced. The efficacy of the introduced schemes has 

been validated with analysis and simulations. 

The last paper with the title of “Massive MIMO 

Operation in Fronthaul-capacity Limited Cloud Radio 

Access Networks” is contributed by Sangkyu, Chan-

Byoung, and Saewoong from Seoul National 

University and Yonsei University. In this letter, the 

authors investigate the effect of a limited number of 

antennas or users due to a fronthaul link constraint on 

the wireless sum-rate, which also depends on the 

beamforming strategy and the radio signal transport 

method in a fronthaul link. It is shown in the letter that 

for a given fronthaul link capacity and user 

environments, the beam-forming and the fronthaul 

transport methods can be jointly optimized to 

maximize the sum-rate.  

We would like to thank all authors for their 

contributions and great efforts. We hope you enjoy 

reading this special issue and also hope these articles 

can stimulate further research works in this area. 

 

Lingjia Liu (S’03–M’08) 

received the B.S. degree in 

Electronic engineering from 

Shanghai Jiao Tong University, 

China, and the Ph.D. degree in 

Electrical Engineering from 

Texas A&M University, USA. 

He is currently working as an 

Assistant Professor in the EECS 

Department at the University of Kansas (KU), USA. 

Prior to that he spent more than three years in Samsung 

Research America leading Samsung’s work on multi-

input-multiple-output (MIMO), coordinated multi-

point (CoMP) transmission, and heterogeneous 

networks for 3GPP LTE and LTE-Advanced standards. 

His general research interests lie in the areas of 

wireless communication systems, statistical signal 

processing, queuing theory, information theory, with 

emphasis on delay-sensitive communication over 

wireless networks, and smart energy networks.  

Dr. Liu served as Technical Program Committee (TPC) 

member/chairs of various international conferences 

including IEEE ICC, IEEE GLOBECOM, IEEE ICNC, 

WCSP, etc. He currently serves as an Editor for IEEE 

Trans. on Wireless Comm., and Associate Editors for 

EURASIP Journal on Wireless Comm. and Networking 

and International Journal on Comm. Systems. 

 

 

GUOSEN YUE (S'99-M'04-

SM'09) received the B.S. degree 

in physics and the M.S. degree in 

electrical engineering from 

Nanjing University, China in 

1994 and 1997, and the Ph.D. 

degree in electrical engineering 

from Texas A&M University, 

College Station, TX, in 2004. He was a senior research 

staff with the Mobile Communications and Networking 

Research Department, NEC Laboratories America, 

Princeton, New Jersey. In August 2013, he joined 

Broadcom Corporation as a system design scientist. Dr. 

Yue serves as an Associate Editor for the IEEE 

Transactions on Wireless Communications. He has 

served as the associate Editor for Research Letters in 

Communications, the Guest Editors for EURASIP 

Journal of Wireless Communication and Networking 

special issue on interference management, ELSEVIER 

PHYCOM special issue on signal processing and 

coding. He served as the Symposium Co-chair for 

IEEE ICC 2010, the Track Co-chair for IEEE ICCCN 

2008, the steering committee member for IEEE RWS 

2009. He is a senior member of the IEEE.
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Full-dimension MIMO Cellular Systems Realizing Potential of Massive-MIMO 

Yang Li, Md Saifur Rahman and Young-Han Nam 

Samsung Research America, United States 

{yang.l, md.rahman, younghan.nam}@samsung.com

1. Introduction 

The rapid growth of data traffic driven by mobile 

devices poses challenges on capacity of cellular 

networks. One promising technology for meeting the 

demands is massive MIMO, by employing a large 

number of antennas to exploit MU-MIMO (multi-user 

MIMO) [1]. However, most of previous works have 

considered massive number of antennas being arranged 

along the horizontal axis, which is not applicable in 

practice, owing to the restriction on the base station 

(BS) form factor. Recently, a concept of full-dimension 

MIMO (FD-MIMO) adopting 2-dimensional (2D) 

array antenna has been proposed with intent to cope 

with these practical challenges [2]. A typical FD-

MIMO deployment scenario is illustrated in Figure 1, 

for a macro base station (BS) with 2D active antenna 

array (AAA) panels. 

 

 
Figure 1 FD-MIMO deployment scenario example 

 

This paper presents recent advances in FD-MIMO in 

cellular systems, and shows that FD-MIMO attains 2-5 

times cell average throughput gain and cell-edge 

throughput gain using system-level simulations. Key 

challenges are discussed for implementing FD-MIMO 

in LTE/LTE-advanced, especially channel state 

information (CSI) estimation and channel quality 

indicator (CQI) prediction. 

 

2. System Model 

In this section, we first introduce 2D AAA, the key 

component of FD-MIMO and then present a system 

model. 

 

FD-MIMO Architecture. 

One of the most important features of the FD-MIMO 

BS is that the BS can perform 3D beam steering in both 

azimuth and elevation angles. An FD-MIMO BS 

equipped with 2D antenna array, which is fed by 

multiple TRX chains as illustrated in Figure 2, enables 

the multiple 3D beam steering toward multiple users. 

In one extreme case, each element in the 2D array is 

fed by a separate TRX chain, in which case the number 

of TRX chains is the same as the number of antenna 

elements. In typical deployment scenarios, however, a 

TRX feeds multiple antenna elements simultaneously, 

which reduces hardware cost and implementation 

complexity. For beam-steering, the number of TRX 

chains in each dimension determines the steering 

precision; the larger the better. 

 
Figure 2 FD-MIMO system architecture 

 

Signal Model. 

Let Nt, Nr, K , and Nd be the number of the transmit 

antennas (or number of TRX) at BS, the number of the 

receive antennas at a user, the number of UEs, and the 

number of data streams at a user. The signal 

transmitted by the BS at subcarrier j is: 

𝒙𝑗=𝑘=1𝐾𝑾𝑘j𝒔𝑘j,              (1) 

where 𝑾 
 
 is an 𝑁𝑡×𝑁𝑑 precoding matrix used for user 

i, 𝒔 
 
 is a 𝑁    signal vector transmitted for user i. 

The transmit power is constrained by 

𝐄𝑗Tr(𝒙𝒋(𝒙𝑗)𝐻=1, where   ( ) denotes the trace of a 

matrix. For notation simplicity, otherwise specified the 

subcarrier index j is dropped in the rest of the paper.  

The received signal at user 𝑘 is: 

𝒚𝑘=𝑯𝑘𝑾𝑘𝒔𝑘+𝑯𝑘𝛴𝑖≠𝑘𝑾𝑖𝒔𝑖+𝒏𝑘,  𝑘= ,…,𝐾 ,  (2) 

where 𝑯  is an 𝑁𝑟×𝑁𝑡 channel matrix between the BS 

and user k, and    is the noise at user k.  

 

3. FD-MIMO Design Challenges 

An FD-MIMO BS perform 3-dimension (3D) 

precoding to efficiently deliver signals to serving users 

while minimizing mutual interference among users, 

Elevation 

beamforming

Azimuth 

beamforming

FD-MIMO simultaneously 

supports elevation & azimuth 

beamforming and > 10 UEs 

MU-MIMO

FD-MIMO 
eNB

Data stream 1

+ DMRS port 1

Data stream K

+ DMRS port K

Precoding
with 16 TRXs

TRX

TRX

Feed network

Antenna 
element
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and therefore significantly increase spectral efficiency 

by high-order MU-MIMO transmission. To harvest 

gain of FD-MIMO, the BS must acquire CSI of users, 

which is typically obtained by uplink sounding 

reference signals (SRS) in time division duplex (TDD) 

systems or via CSI feedback in FDD systems. Large 

number of antennas used in FD-MIMO gives new 

challenges on circuit and CSI feedback design.  

 

CSI Acquisition by Reciprocity in TDD.  

In TDD systems, BS can obtain downlink CSI using 

uplink channel sounding if channel reciprocity holds. 

To exploit reciprocity in practice, however, phase and 

amplitude mismatch in different antenna branches must 

be calibrated and compensated. Otherwise, the channel 

directions estimated based on SRS is not aligned with 

actual downlink channels, as illustrated in Figure 3.  

 

 
Figure 3 Illustration of antenna calibration issues 

 

In FD-MIMO, the calibration circuit needs to 

interconnect a large number of antennas, which makes 

it difficult to manufacture these interconnections with 

uniform high precision. Calibration circuits with 

insufficient phase accuracy will result in large residual 

errors and degraded beam steering performance. One 

example is shown in Figure 4, where cascade  

                                                         

                                                     

                                                       

              Figure 4). Therefore, in TDD FD-MIMO 

new reliable and scalable calibration architecture and 

algorithm are needed to maintain the reciprocity. 

 
Figure 4 Illustration of error propagation in calibrating a 

large array 

CSI Acquisition by Feedback in FDD. 
In FDD systems, precoding based on channel-

reciprocity is challenging, and thus CSI feedback is 

typically required. In current 3GPP LTE/LTE-

advanced systems, CSI includes PMI (precoding matrix 

indicator), RI (rank indicator), and CQI (channel 

quality indicator). For FD-MIMO, overhead of CSI-RS 

(CSI reference signal) required for downlink channel 

estimation will be large, which is usually proportional 

to the number of TRX in the FD-MIMO systems. In 

addition, CSI feedback overhead, CSI estimation and 

PMI selection complexity increase. For example, if 16 

bit codebook is used for 16-Tx antenna systems, the 

number of codewords in the codebook is 216 = 65536, 

which imposes huge complexity in implementation, 

and may not be easily fit in in the currently-designed 

CSI feedback channels in 3GPP LTE/LTE-A. Hence, it 

is necessary to maintain a small codebook size while 

achieving FD-MIMO throughput gain. 

 

 
Figure 5 Codeword (PMI) selection for 2D AAA in FD-

MIMO  

 

One potential approach is to exploit channel 

correlations among antennas in 2D array panel. As 

shown in Figure 5, a preferred PMI shall effectively 

capture power of the multi-path components centered 

around a certain elevation and azimuth angle. The 

selected precoder (PMI) can be represented by 

Kronecker product of a horizontal and vertical channel 

component precoders. For example, for a FD-MIMO 

systems with NM antennas, N antennas in a horizontal 

row and M antennas in a vertical column, BS transmits 

CSI-RS in the first row and the first column only, and a 

user estimates and feeds back the corresponding Nx1 

horizontal channel hH and Mx1 vertical channel hV, 

respectively. The BS reconstructs the channel as: 

                                   𝒉=𝒉𝐻⊗𝒉𝑉                     (3) 

In this case, the CSI-RS resource used and the 

feedback overhead is proportional to N + M, instead of 

NM, and a significant resource and complexity 

reduction is attained when N, M is large. 

Other Possibility in CSI Acquisition in FDD. 
Although for FDD system, channel reciprocity does not 

hold, downlink and uplink channels are not 

independent, because in either direction the 

PA
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electromagnetic waves propagate through similar 

environment, as shown in Figure 6. In [3], measurement 

campaign on FDD UMTS band shows that power-delay 

profile (PDP) and root-mean-square (RMS) of delay 

spread is very similar in both downlink and uplink. 

Therefore, in many cases uplink and downlink have 

similar values in the number of multipath components, 

angle of arrival (AoA) and departure (AoD), power and 

delay of each path. 

 

Figure 6 Dependency between downlink and uplink for 

FDD systems 

 

We now study the correlation between the uplink and 

downlink covariance matrices. Figure 7 shows that 

dominant eigenvalue between uplink and downlink 

covariance is strongly correlated, regardless of duplex 

distance. For WCS band with small duplex distance 

50MHz (downlink 2300MHz, uplink 2250MHz), the 

correlation is 0.995, and for AWS band with large 

duplex distance 400MHz (downlink 2100MHz, uplink 

1700MHz) the correlation is still as high as 0.827. In 

contrast, we observe that the correlation of directions 

of the dominant eigenvectors highly depends on duplex 

distance, as shown in Figure 8, where the correlation is 

measured as angle between two vectors (0-degree 

means fully correlated, while 90-degree means 

uncorrelated). In WCS band the probability of the 

angle being less than 30 degree is 99.6%, while in 

AWS band such probability is less then 1%. 

 

Figure 7 Maximum eigenvalue of uplink and downlink 

covariance matrices  

 
Figure 8 Angle between dominant eigenvector of uplink 

and downlink covariance matrices 

 

CQI Compensation and Prediction. 
In cellular networks, CQI is required in channel-

dependent scheduling and is reported by the users after 

processing channel estimates on cell-specific reference 

signals (CRS) or CSI-RS. For instance, the user 

estimates the best precoder (or, PMI) that matches the 

measured channel information using the CSI-RS 

received and estimates the CQI presuming the PMI is 

used. In FD-MIMO, CQI mismatch is expected due to 

e.g. the number of antennas used in precoding is 

different in downlink estimation in TDD systems and 

channel reconstruction inaccuracy in FDD. 
 

In this paper, a CQI mismatch compensation scheme is 
proposed for CSI-RS-based CQI in TDD systems, in 
which user k estimates downlink channel direction 
based on uplink SRS: 𝑯 , 𝑘 =  ,… , 𝐾 . The received 
CSI-RS symbols with antenna virtualization 𝑾  at user 
k is   

𝒚𝑘=𝑯𝑘𝑾0𝒔0+𝒏𝑘,  𝑘= ,…,𝐾 .     (4) 

For simplicity, it is assumed that the single-user (SU) 
CQI for user k is equal to SINR (signal-to- interference 
and noise ratio)    : 

 0𝑘=||𝑯𝑘𝑾0||2𝜎𝑘2,               (5) 

where   
  is the receiver noise plus inter-cell 

interference, which is unknown by the BS. The SINR 
   for the data symbols when precoding Wk is applied 
is: 

 𝑘=||𝑯𝑘𝑾𝑘||2𝜎𝑘2.                 (6) 

Given 𝑯  is known by the BS, it can obtain SINR for 
data channels as: 

 𝑘=||𝑯𝑘𝑾𝑘||2||𝑯𝑘𝑾0||2  0𝑘.              (7) 

In the above equation, 𝑾  and 𝑾  are known at the BS 
and 𝑯𝑘 can be estimated based on SRS in the uplink 
transmission for TDD systems, and accordingly the BS 
can predict the CQI for link adaptation. Figure 9 shows 
the above prediction works well if there is no MU-
MIMO transmission, achieving 10% normalized 
prediction error. In case of MU-MIMO, the CQI 
prediction is more difficult and designing reliable 
estimation algorithms is still open issue. 
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Figure 9 CQI prediction for SU-MIMO 

 

4. System-level Simualtion 

This section presents system-level simulation results 

for the proposed FD-MIMO system based on 3D ITU  

channel model [4]. A 4 antenna system is considered as 

a baseline. Figure 11 and Figure 10show FD-MIMO 

capacity gain with two precoding methods, conjugate 

beamforming and signal-to-leakage-and-noise ratio 

(SLNR) [5]. For conjugate beamforming, around 2.5 

times gain of cell average throughput and 5 times gain 

of cell edge throughput are achieved. For SLNR, both 

cell average throughput and cell edge throughput 

achieve 5 times gain.   

 
Figure 10 FD-MIMO cell edge capacity gain 

 

 
Figure 11 FD-MIMO cell average capacity gain 

 

5. Conclusion 
In this paper, challenges in FD-MIMO are presented 
with preliminary solutions for CSI acquisition in both 
TDD and FDD, and CQI prediction. System simulation 
results show a 2-5 times cell average throughput gain as 
well as cell-edge throughput gain. Based on our results, 
FD-MIMO has great potential to improve spectral 
efficiency in LTE and LTE-advanced systems. 
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1. Introduction 

Massive MIMO or large-scale antenna system is one of 

the key technologies currently studied and the 3rd 

Generation Partnership Project (3GPP) Long Term 

Evolution (LTE) standard prepares this for the next 

generation systems based on LTE-advanced system [1] 

[2]. As a first step, a study item [3] has been initiated to 

study new channel model and a new user deployment 

scenarios under which evaluation of the antenna 

technologies will be performed. Follow-up 3GPP study 

and work items on FD-MIMO are expected in 3rd 

quarter of 2014. The focus of the study and work items 

will be to identify key areas in the LTE-Advanced 

standards that need to be enhanced in supporting more 

than 8 antenna ports placed in a 2-D array structure. 

Most of massive MIMO literatures assume that the 

antenna ports are horizontally placed in the transmitter-

side. However, 64TX system in horizontal has almost 

4m wide, which is not proper to practical system 

deployment. By incorporating 2-D active array into 

LTE systems, it is expected that system throughput will 

be drastically improved beyond what is possible in 

conventional LTE systems with passive antennas at a 

cost of reasonable array size. 

 

With 2-D active array antenna, FD-MIMO system can 

have two advantages in MIMO transmission 

perspective. In multiple-user MIMO point of view, FD-

MIMO utilizes multiple antennas placed in a 2-D 

antenna array panel to realize high order multi-user 

MIMO (MU-MIMO) transmissions. High order MU-

MIMO refers to the use of a large number of antennas 

at the base station to transmit or receive spatially 

multiplexed signals to or from a large number of 

terminals by 3-D user-specific beamforming in both 

horizontal and vertical direction. The other point of 

view, such as single-user MIMO, 2-D antenna array 

can radiate the signal into 3-D space and the channel 

independency and de-correlation between vertical ports 

as well as horizontal ports can have rank for UE 

depending on UE's location [10][11].  

 

To evaluate 3-D beamforming and MIMO technics, it 

is necessary to model large and small scale parameters 

in vertical domain as well as in horizontal domain. In 

this paper, we discuss spatial channel characteristics of 

vertical domain as well as horizontal domain under 

different 2-D active array configuration. Impact on 

separate and full channel measurement and feedback 

for horizontal and vertical antennas are also discussed. 

2. 3-Dimensional Stochastic Channel Model 

In this section, we first present the formulation of the 

3-Dimensional stochastic channels with considering 

both vertical and horizontal domain. 

 

Channel Coefficient Generation 

3-Dimensional channel can be modeled with N clusters, 

modeling scatter between transmitter and receiver and 

M rays per a cluster. Conceptual 3-Dimensional 

channel is shown in Figure 1 with an exemplary view 

of one of the clusters. Channel coefficient for each 

cluster n and each receiver and transmitter element pair 

u, s is given by [4-8]: 
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 where,  

nP  is the power of nth cluster 

  
,,urxF ,

,,urxF  are the receive antenna element n field 

patterns in the direction of azimuth angle and 

zenith angle, respectively 

,,stxF ,
,,stxF are the transmit antenna element s field 

patterns in the direction of azimuth angle and 

zenith angle, respectively 

 

Figure 1. 3-Dimensional Channel. 
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
mn, , 

mn, , 
mn, , 

mn, are the initial phase for each ray m 

of each cluster n for different polarization 

combinations 

AOAmnZOAmn ,,,, ,   are zenith and azimuth arrival angle 

for ray m of cluster n, respectively 

AODmnZODmn ,,,, ,  are zenith and azimuth departure angle 

for ray m of cluster n, respectively 

mntxmnrx rr ,,,,
ˆ,ˆ  are the spherical unit vector of receiver 

and transmitter, respectively 

stxurx dd ,, ,  are the location vector of receiver antenna 

elements u and transmit antenna element s, 

respectively 

  
mn,  is the cross polarization power ratio 

  
0λ  is the wave length of the carrier frequency 

  
mnv ,

 is the Doppler frequency component using 

speed and travel angle of receiver 

 

 
 

Figure 2. Distance Dependent RMS of ZSD 

 

In equation above, we can observe that phase shifted 

channel between antenna elements which depends on 

relative distance of antenna elements 
stxurx dd ,, , , can vary 

with different angular spread of clusters in vertical and 

horizontal direction. The different variance of angular 

spread between vertical and horizontal domain cause a 

significant impact on the channel spatial multiplexing 

capacity using different 2D active array structure. The 

generation of arrival and departure angles nw  of each 

cluster n follows random angles in proportional of the 

power of cluster Pn as 

  wYwXw nnnn   

where 
nw  is   CPP nn /)max(/ln for horizontal 

domain and   CPP nn /)max(/ln for vertical domain, 

respectively and C is a scaling factor related to the total 

number of cluster in the given channel condition and Xn 

is integer random number from set {-1, 1}. Other 

parameters are listed in Table 1 and [7, 8]. The angular 

spread for each cluster is derived by RMS angular 

spread  and angles of rays within a cluster randomly 

spread centering on a cluster angle. Even with the same 

RMS angular spread for azimuth and zenith angles, the 

average azimuth cluster angle is more than a square of 

the zenith cluster angle.  

 

For example, UE has one antenna element and eNB has 

two antenna elements in vertical direction with 

coordination of (x, y, z)=(0, 0, 0) and (0, 0, 0.5λ). 

Channel of second antenna elements is phase shifted 

from the reference (first) antenna in proportional to 

zenith angle of departure. RMS distribution of zenith 

angular spread of departure (ZSD) is shown in the 

Figure 2. The figure shows that we can have similar 

angular spread in elevation domain and horizontal 

domain (15º-30º) in case of UEs placed center of cells. 

This reveals that high rank transmissions can happen 

with vertically spaced array than legacy array structure 

which placed horizontal only. It is noted that there is 

marginal different of angle distribution with the 

different floors, however, smaller angles are observed 

when UE located in higher floor. 

 

3. Performance Assessment 

In this section, we investigate the characteristics of 3-

Dimensional channel based on different UE feedback 

schemes for 2D active array system. For TDD system, 

the eNB can have knowledge of channel of massive 

antennas relying on channel reciprocity. However, 

reciprocity does not hold for FDD system and need to 

have a proper scheme to feedback channel of antennas. 

 

Channel Measurement for 2-Dimensional Array. 

Scheme #1: Full channel measurement and single 

feedback - The receiver configures 
VHT NNN   

antennas from the transmitter with designed precoder 

matrix for measurement. Search complexity for 

precoder pn can significantly increase in proportional to 

the total number of antenna in the system. 

nn
,PN,

PHmaxarg
npn

np


  

where Hn is 
VRX NN  channel matrix, N is set of rank,  

Pn is the set of rank n precoder matrix and pn is 

precoder with 2-D DFT nNT   matrix. 

Scheme #2: Full channel measurement and separate 

feedback - The receiver configures NT antennas from 

the transmitter as in Scheme #1. To reduce complexity 

of selecting best precoder and preferred rank, 

horizontal precoder H

np and vertical precoder V

np can be 

separately searched and feedback. 
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Scheme #3: Separate channel measurement and 

separate feedback - To reduce measurement and best 

precoder selection complexity, the receiver only 

configures 
VH NN  measurement resources out of NT 

antennas from the transmitter. The receiver feedbacks 

two precoders; one from NH antennas and another from 

NT antennas. With this scheme, measurement overhead 

can be decreased in order of half, however, UE has 

partial knowledge of overall channel and this leads 

mismatch of selected precoder from the Scheme 1 and 

2. 
H

n

H

n
pn

H

n
H
n

H

p PHmaxarg
P,N 

 , V

n

V

n
pn

V

n
V
n

V

p PHmaxarg
P,N 

  

After receiving CSI feedback from the UE, the 

transmitter selects weight for each active array using pn 

for Scheme #1 and the overall weight 
np̂  can be 

calculated using kronecker product of two precoders 

for Scheme #2 and #3. 
V

n

H

nn ppp ˆ  

 

Two Dimensional Rank 

This section presents the link-level performance for a 

2-D array antenna system based on the channel 

measurement and feedback methods introduced in 

previous section. The simulation is conducted with 3-D 

channel models where the eNB is equipped with eight 

transceiver unit with 32 antenna elements and each 

transceiver unit has one antenna element in horizontal 

and 4 in vertical direction. Equivalently, the eNB has 

2-D transceiver units with 4 transceiver unit in 

horizontal and 2 transceiver units in vertical with 32 

antenna active elements. One UE with two receive 

antennas is dropped newly over 40msec time interval 

for different distances with d=50, 500, and 1000 meters 

and different heights with 1, 4 and 7th floor.  

 

In Figure 3, we can see that the performance loss from 

the separate feedback (gap between scheme 1 and 

scheme 2) is up to 3dB. Figure 4 suggests a reason for 

the performance gap. Shown in Figure 4, schemes 2 

chooses full rank in both horizontal and vertical 

domain (H, V)=(2, 2) with high ratio in all SNR ranges 

even though (H, V)=(2, 2) cannot be used in precoder 

selection of separate feedback. In addition, the number 

of codebook for scheme 2 (64+48+64=176) is smaller 

than that for scheme 1 (2x28=512). As a result, 

inaccurate precoder selection results in performance 

degradation of separate feedback. 

 

In Figure 3, we can observe that scheme 2 achieves 

some performance gain over scheme 3 by using full 

channel measurement. In other words, the performance 

of scheme 3 can decrease due to feedback mismatch 

using measuring 56% of channels. However, we can 

also observe that the performance of scheme 3 is very 

close to that of scheme 2 with separated feedback 

mechanism. It is observed that if UE select feedback in 

each direction separately, knowledge of channel 

information has less impact on overall performance.  

 
Figure 3. Spectral Efficiency Results. 

 

 
Figure 4. Rank Ratio Results 

 

 
Figure 5. Change Rate of Vertical (V) and Horizontal 

(H) Ranks (d=500m, 4th floor). 

 

Lastly, we evaluate rate of rank change estimated with 

CSI-RS whose duty cycle is 5 msec. The average rate 

of change is shown in Figure 5 for both horizontal and 
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vertical domain, when scheme 2 is used. As shown in 

the figure, the vertical rank changes quite often, once in 

as small as 15msec in all SNR range. Therefore, in 2-D 

active array antenna systems, it is important to exploit 

both vertical and horizontal rank with proper feedback 

interval. 

 

4. Conclusion 

We have investigated 3-D channel characteristics with 

various 2-D active array antenna systems. We 

presented the link-level performance of 2-D active 

array antenna system using different channel 

measurement and feedback methods. Simulation result 

shows that 2-D antenna structure based on full channel 

measurement and feedback outperforms than full or 

partial channel measurement and separate feedback 

mechanism but small degradation can be obtained with 

separate measurement with reduced feedback.  
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1. Introduction 

In recent years, wireless communications has 

experienced an unprecedented growth-rate of wireless 

data traffic due to the rapid introduction of various 

connected mobile devices and excessively data-hungry 

applications run on those devices. If the trend is 

observed, it is not very difficult to predict the demand 

for more data volume in future. According to the 

International Telecommunication Union (ITU) [1], the 

total number of mobile cellular subscription is fast 

approaching the total number of the people living on 

earth, and is expected to reach 7 billion by the end of 

2014, which corresponds to a penetration rate of 96%. 

Cisco Systems predicts that Global Mobile data traffic 

will increase nearly 11 fold between 2013 and 2018 

reaching 15.9 exabytes per month in 2018 [2].  In order 

to fulfill this huge capacity demand, an incrementally 

improved multi-user multiple-input-multiple-output 

(MU-MIMO) could be thought of as a primary solution 

to increase the spectral-efficiency of the underlying 

communication system. However, the presently 

available MIMO transmissions, allowed by LTE-

Advanced systems [3], do not support more than 8 

antenna ports at the base station.  

Recently, Massive MIMO, also known as Large Scale 

MIMO or Full Dimension MIMO (FD-MIMO) ([4], 

[5]), has created much interests, both in academia and 

industry, with the promise of meeting the future 

capacity demand by providing increased spectral-

efficiency achieved through aggressive spatial 

multiplexing. Considering the form factor limitation at 

the base station (BS), instead of placing a large number 

of antennas horizontally, 3D Massive MIMO system 

employs those antennas in a 2D antenna array panel 

enabling the exploration of the degrees of freedom in 

elevation domain along with those in the azimuth 

domain. 

Apart from the huge potential of providing excellent 

spatial resolution and array gains, Massive MIMO can 

also offer a significant reduction of latency, a 

simplified multiple access layer, and robustness to 

interference [6]. With the help of a large number of 

antennas, this system can concentrate more energy in a 

particular direction leading to a dramatic increase in 

energy-efficiency. Furthermore, Massive MIMO is the 

key enabling technology for gigabit per second data 

transmission in the millimeter wave (mmW) wireless 

communications with carrier frequency between 30 and 

300 GHz. In mmW communications, it becomes 

feasible to pack a greater number of antennas at the 

base station. However, the benefits of Massive MIMO 

are limited by the accuracy of the channel state 

information (CSI) obtained at the transmitter. The CSI 

is critical for functionalities such as downlink beam-

forming, transmit precoding, user scheduling, etc. 

In this letter, we discuss different channel estimation 

methods used for 3D Massive MIMO systems. We also 

describe the potential downlink beam-forming 

strategies for such systems. 

2. Channel Estimation Methods 

A typical 3D massive MIMO system is shown in Fig.1.  

 
Fig.1: Model of 3D massive MIMO system 

The antenna array at the base station is placed in the X-

Z plane with M antennas in the horizontal direction and 

N antenna elements in the vertical direction. The 

spacing between adjacent antenna elements is assumed 

to be dr. 

In general, there are two methods to estimate the 

MIMO channel. First is the traditional way where the 

channel estimation is done by estimating the channel 

transfer function. Alternatively, channel estimation can 

be conducted based on the parametric channel models 

to estimate the direction of arrival (DoA) and direction 

of departure (DoD) of different paths. 

2.1 Estimation of Channel Transfer Function 

Channel state information can be obtained by sending 

some predefined pilot signals/reference signals, and 

estimating the channel matrix from the received signal. 

If the channel statistics are known, the instantaneous 

channel matrix can be obtained by applying the 

Bayesian minimum mean square (MMSE) estimator on 

the received signals [7]. On the other hand, minimum 

mailto:lingjialiu%7d@ittc.ku.edu
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variance unbiased (MVU) estimator can be used if the 

channel statistics is not available [8]. In these channel 

estimators, a linear system of equations is solved, 

which actually multiplies the received pilot signal with 

an inverse of the covariance matrix [9]. This gives rise 

to cubic computational complexity, and is extremely 

computationally expensive for Massive MIMO systems. 

In order to address this complexity issue, a polynomial 

expansion technique, coined as PEACH (Polynomial 

Expansion Channel) estimators, has been introduced in 

[9]. A set of low complexity channel estimator is 

obtained based on approximating the inversion of 

covariance matrices in the MMSE estimator by an L-

degree matrix polynomial. It is shown that as the value 

of L becomes large, the PEACH estimator converges to 

the MMSE estimator, and L does not scale with the 

system dimension. Therefore, these estimators are 

supposed to be beneficial for practically large systems.  

In estimating the channel, most the previous works are 

based on time division duplex (TDD) operation which 

assumes channel reciprocity and reciprocity calibration.  

If frequency division duplex (FDD) is employed, the 

channel estimation process becomes very complex 

because the MIMO channel sounding requires a great 

deal of overhead which increase with the number of 

antennas. Here, a dedicated feedback mechanism for 

the receiver to report the channel state information is 

required. In [10], compressive sensing (CS) is used to 

reduce the CSI feedback load in large-scale MIMO 

systems by exploiting sparsity in the spatial frequency 

domain. In order in increase the efficiency, an adaptive 

CS based feedback scheme is also proposed where the 

feedback can be dynamically rearranged depending on 

the channel condition.  

A joint spatial division and multiplexing (JSDM) 

approach is adopted in [11] in order to achieve the 

throughput gain and system operation simplification 

similar to Massive MIMO.  It is shown that by JSDM, 

users can be segmented into groups with similar 

transmit correlation. The tall unitary structure among 

the transmit correlation matrices can be satisfied by the 

system geometry.  

2.2 Parametric Channel Estimation 

Channel estimation can also be conducted by 

estimating channel parameters, where spatial 

correlation of wireless channel is exploited for the 

better accuracy of the estimation. For a calibrated 

system, it has been observed that parametric approach-

based channel estimation outperforms the simple 

unstructured interpolation schemes. In [12], a 

parametric channel estimation method is presented for 

sparse multipath fading channel using pilot subcarrier. 

The channel frequency response is modeled as the 

Fourier Transform of multipath finite impulse response. 

The estimator estimates the channel parameters such as 

delays, gains, and phases of the paths.  

The uplink sounding reference signals go through a 

series of reflection, refraction and diffraction before 

arriving at the base station, where the received signal is 

the superposition of many resolvable signals coming 

from different signal paths. This parametric channel 

model is also the basis for the virtual channel 

representation for MIMO systems introduced in [13]. 

For a 3D massive MIMO system where there are P 

resolvable paths, the received signal at the (m, n)th 

antenna element,          and        𝑁, of an 

  𝑁 antenna array, can be expressed as [14]:  

𝑥 , =𝑖=1𝑃𝑠𝛼𝑖𝑒−𝑗 −12𝑢𝑖+𝑁−12𝑣𝑖𝑒𝑗 −1𝑢𝑖+ −1𝑣𝑖+𝑤
 ,  
                  

(1) 

Where 𝑠  is the transmitted signal, 𝛼  denotes the 

complex channel gain,     denotes the elevation DoA, 

and 𝜙𝑖 denotes the azimuth DoA of the 𝑖 th path, 

  𝑖  𝑃 . Here,𝑢𝑖=2𝜋𝑑𝑟cos 𝑖/𝜆, 

𝑣𝑖=2𝜋𝑑𝑟sin 𝑖cos𝜙𝑖/𝜆, 𝑤 ,  represents the additive 

white Gaussian noise (AWGN), and 𝜆  is the 

wavelength.  

If we denote the received data matrix of the antenna 

array by X   𝐶 𝑥𝑁, then   can be expressed as:  

 =𝑖=1𝑃𝑠𝛼𝑖𝑒−𝑗 −12𝑢𝑖+𝑁−12𝑣𝑖𝐚 𝑢𝑖𝐚𝑻 𝑣𝑖+𝑁     (2) 
                   

where𝐚 𝑢𝑖=[1, 𝑒𝑗𝑢𝑖, …, 𝑒𝑗 −1𝑢𝑖]𝑇,𝐚 𝑣𝑖=[1, 𝑒𝑗𝑣𝑖, …, 
𝑒𝑗𝑁−1𝑣𝑖]𝑇, and 𝑁  is the AWGN noise matrix. The 

vectors 𝐚 (𝑢 ) and 𝐚 𝑣𝑖 can be viewed as the steering 

vectors of elevation angle and azimuth angle 

respectively. The Cramer Rao Lower Bound (CRLB) 

for various antenna configurations is also evaluated in 

[14]. For the SNR ranging from -6 dB to 25 dB it is 

observed that Mean Square Error (MSE) reduces as the 

SNR increases (Fig. 2).  

 
Fig. 2. CRLB for various Antenna configuration. 

The root mean square error (RMSE) of the angle 

estimation of various base station antenna array 

configuration can be shown as in Fig. 3. Here it is 
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assumed that the base station is at a height of 35 meters 

while the mobile station is at 3.5 meters height. For the 

underlying 3D massive MIMO systems, it is generally 

assumed that the spacing between two adjacent antenna 

elements is equal to half wavelength.  

 
Fig. 3.  RMSE of 3D DoA Estimation for Various Antenna 

Configuration 

We can see from Fig. 3 that the performances of 

elevation angle estimation of different antenna array 

configuration are almost parallel to each other. The 

MSE decreases as the SNR increases. However, it is 

interesting to note that the performance of azimuth 

angle estimation does not scale proportionally to the 

number of antennas horizontally. We observe that the 

MSE of azimuth angle estimation of a 2 × 32 array is 

even larger than that of a 4 × 16 array, which seems a 

little bit counter-intuitive. The reason for this 

phenomenon to happen is because azimuth angle 

estimation is actually coupled with elevation angle 

estimation. In the case of 2 × 32 antenna configuration, 

the performance of elevation angle estimation is so 

poor that it hits that of azimuth angle estimation.  

In scenarios like that of massive MIMO systems, where 

the base stations are equipped with hundreds of 

antennas, because of the narrow angular spread, it 

becomes very difficult for the base stations to perform 

the beam-forming by acquiring channel state 

information. It is necessary to conduct the beam-

forming in both azimuth and elevation domain. Under 

parametric channel modeling, the estimation of channel 

essentially becomes estimation of direction of arrival 

(DoA) or direction of departure (DoD) and delay of 

resolvable paths.  

There exist many subspace based techniques such as 

Multiple Signal Classification (MUSIC), Estimation of 

Signal Parameters via Rotational Invariance 

Techniques (ESPRIT) or Matrix Pencil technique for 

estimating the DoA/DoD for a 2D mobile wireless 

system. However, its counterpart in 3D has not yet 

been well explored in the literature of wireless 

communication. The multipath propagation channel is 

characterized not only by the DoA’s but also by the 

time delays of different propagation paths.  

In [15], an iterative algorithm is presented for joint 

estimation of the time delays and direction of arrivals 

of overlapping reflections of a known signal. This 

algorithm approximates the maximum likelihood 

estimator (MLE), and it is shown that the accuracy of 

resulting DoA surpasses the Cramer Rao Bound (CRB) 

of the DoA-only estimation. However, due to the 

iterative process, this algorithm has very high 

computational complexity. A technique of relatively 

low complexity for estimating known signal 

parameters with the assumption of asynchronous 

reception of signals in the array of sensors is proposed 

in [16]. A disadvantage of this model is that the pairing 

of the 3D angles and delay cannot be determined 

automatically. Therefore, signals in close parameters 

become indistinguishable.  

In [17], a low complexity and high accuracy MUSIC 

based method—namely, TST-MUSIC (Time-Space-

Time MUSIC) is proposed which offers great 

performance in estimating DoA and delay of a wireless 

channel. It is shown that the tree-structured TST-

MUSIC algorithm, in addition to rendering automatic 

pairing of the estimated delay and DoA, is able to 

resolve incoming rays with very close DoA or very 

close delays. However, this TST-Music method still 

has a higher complexity and it can only be applied 

when the parameters are very close.  

Analytical performance evaluation of the standard 

ESPRIT first appeared in [18]. Even though, it 

introduces a dramatic reduction of computation and 

storage cost by requiring that the sensor arrays 

possesses a displacement invariance, the result 

obtained is essentially based on the distribution of 

eigenvectors of the sample covariance matrix. In [19], 

a different approach is introduced where a first order 

expression of the DoA statistics in terms of 

fundamental parameters such as array manifold, signal 

covariance matrix, and number of snapshot and sensors 

rather than singular values and vectors is presented. 

However, in this work, the authors only considered the 

1D standard ESPRIT method with the assumption of 

additive white Gaussian noise. [20] gives a more 

general framework for the MSE analysis of multi-

dimension cases, where it is shown that MSE 

expression only depends on the antenna array 

configuration as well as the second order moments of 

the noise. 

 

3. MIMO 3D Beam-forming 

To take advantage of the additional degrees of freedom 
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provided by 3D Massive MIMO systems, 3D beam-

forming is introduced as one of the most important 

design considerations.  

In a conventional 2D MIMO system, beam-forming 

can only adapt its transmission in the horizontal 

domain, thus restricting the capabilities of interference 

avoidance and throughput optimization. On the other 

hand, in 3D MIMO systems, 3D beam-forming 

technology combines the horizontal beam pattern 

adaptation together with the vertical beam pattern 

adaptation, making it possible to exploit an additional 

degree of freedom for interference avoidance and beam 

coordination leading to a significant increase in 

throughput and coverage.  

In the recent years, there have been few works on 3D 

beam-forming. An investigation into joint-optimization 

of BS tilting angle and precoding design for multi-user 

active antenna system is carried out in [21]. With a 

view to maximizing the cell average rate by employing 

the maximum ratio transmission (MRT) as the 

precoding scheme, a novel vertical beam-forming 

technique is proposed. For the multi-user systems, the 

authors gave a new 3D beam-forming technique which 

uses the parameter separation method for active beam-

forming systems, thus resulting in a huge reduction in 

computational complexity. It is shown that the 

proposed beam-forming scheme outperforms the 

conventional 2D beam-forming methods. A DFT based 

3D beam-forming codebook-design algorithm is 

proposed in [22], where the vertical codebook size is 

decided according to the distribution of elevation angle.  

A thorough performance analysis of 3D beam-forming 

is carried out in [23]. For both with and without 

coordinated 3D beam-forming, investigations are 

carried out for the cases of single cell scenario 

representing the noise-limited system with negligible 

inter-cell interference, and multi-cell scenarios 

reflecting the interference-limited system. For the 

single cell scenario, it is observed that the maximal 

spectral efficiency does not depend on the radius of the 

cell border, and despite of the increased path loss, 

spectral efficiency can be improved with 3D beam-

forming. For the multi-user case, it is shown that cell 

edge user throughput as well as the spectral efficiency 

can be improved at the same time when the appropriate 

combinations of near- and far downtilts are chosen. 

Even though the direct steering method is very 

effective for increasing the spectral efficiency and 

maximizing the desired user signal at the UE, it is to be 

noted that the minimal possible downtilt must be 

restricted for avoiding extreme interference in the 

neighboring cells for the situation when a very flat 

beam is steered to a UE located close to the cell border. 

The DoA estimation for the 3D Massive MIMO 

systems is related to 3D beam-forming in [24]. To be 

specific, the performance of DoA estimation and its 

impact on 3D beam-forming is analyzed. It is shown 

that the optimal beam-forming will utilize both the 

azimuth and elevation DoA information. Furthermore, 

the DoA estimation errors have a significant impact on 

the performance of the underlying 3D Massive MIMO 

systems. 

4. Conclusions  

The massive MIMO or FD-MIMO has the potential of 

meeting the future data traffic evolution. Along with 

the coordinated multipoint and small cell, the massive 

MIMO will play a key role in the enhancement of the 

spectral efficiency with reasonable complexity, and is 

considered as one of the enabling technologies for the 

fifth generation (5G) mobile communication. Channel 

estimation is the main limiting factor for completely 

exploiting the benefits of massive MIMO. In this E-

letter, we investigated different types of channel 

estimations falling under the headings of estimating 

channel matrix and parametric-based channel 

estimation. We have also discussed about the MIMO 

3D beam-forming technology which possesses a great 

potential of exploiting the benefits of massive MIMO 

system in both elevation and azimuth domains. 
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1. Introduction 

MIMO (multi-input multi-output) technology is a 

fundamental component in any throughput-driven 

wireless system [1]. In recent year, much interest has 

been observed in very large antenna arrays at the base 

stations [2], i.e., massive MIMO. Theoretically, as the 

number of antennas gets sufficiently large, interference 

between co-scheduled users and the impact of fast 

fading vanish, while the simplest precoder and receiver 

(e.g., MRT and MRC) become optimal [2].  

The advantages of massive MIMO reply on 

accurate acquisition of CSI at the base stations. In FDD 

systems, user equipment (UE) provides quantized CSI 

through feedback channel. The overhead, including DL 

reference symbol overhead and UL CSI feedback 

overhead, scales with the number of antennas and the 

quantization methods greatly impact the CSI accuracy. 

This renders the use of very large antenna arrays quite 

challenging. In TDD systems where UL/DL channel 

reciprocity can be exploited, DL channel can be 

acquired by simple processing of estimated uplink 

channel. Furthermore, UE quantization is avoided and 

better CSI accuracy is possible.  

In this paper, we discuss CSI acquisition methods 

for very large antenna arrays targeting LTE standard. 

The implementation issue of channel reciprocity based 

feedback in TDD is discussed and a two-dimension 

feedback mechanism for FDD is proposed. The 

potential of channel reciprocity feedback in TDD is 

demonstrated in the evaluations results. The proposed 

feedback mechanism for FDD is also shown to be 

feasible by system-level evaluation compliant with 

3GPP simulation methodologies.  

 

2. System Model 

We present the system model of a massive MIMO 

system where a 2D planar antenna array is equipped at 

each eNB. An OFDM based air-interface is assumed 

where the system bandwidth is divided into L 

subcarriers. A multi-cell topology is considered where 

the network comprises K cells. Without loss of 

generality, we consider cell 0 as the serving cell, and 

the received signal of a UE located in cell 0 at 

subcarrier k is given by  

,010000
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         (1) 

wherein 

 
k

0y  is an 1rN  received signal vector, rN  is the 

number of receive antennas; 

 
k
lH is an 21NNNr   complex channel response 

matrix from eNB l to the UE in cell 0, where 1N ,

2N denote the number of transmit antennas in the 

elevation (i.e. vertical) and azimuth (i.e. horizontal) 

domains, respectively. Herein 
k
lH reflects the 

composite channel response comprising both large 

scale pathloss and shadowing fading  as well as 

small-scale fading; 

 n  is an 1rN complex additive white Gaussian 

noise vector with element-wise variance 2 ; 

 
k
lw  is a lRNN 21 precoding matrix at cell l, 

where ),min( 21 rl NNNR   is the transmission 

rank in cell l, and 
k
lx is the 1lR  data vector for 

UE in cell l, subject to total power constraint 
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For each cell l, the objective is to obtain the optimal 

beamforming matrix 
k
lw that maximizes the system 

performance, based on information of the DL channel 

and noise/interference covariance matrix. In practical 

wireless system without any inter-cell coordination, 

beamforming for each cell is independently optimized 

and usually achieved by feedback of CSI measured on 

the downlink (DL) reference symbols. Specifically, 

denote the noise and interference covariance matrix 

seen by UE in cell 0 as  
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the optimal precoding matrix 
k
0w  for UE in cell 0, 

after DL channel estimation, is calculated as 
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where )...,(
0,02,01,00 RPPPdiagP is the power 

allocation matrix,  )01max( ,0,0 rr uP   is the 

power assigned to the r-th layer, u is the water filling 

level, and r,0  is the r-th eigenvalue of the equivalent 

channel   k
nn

Hk
0

1
0 HRH


, 0,...,1 Rr   Precoder

k
0w  is 

then quantized and reported in the uplink feedback 

channel (e.g. PUSCH/PUCCH in LTE [9]). 

Prevalent CSI quantization framework often 
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replies on codebook-based feedback, where 
k
0w is 

quantized in the form of a recommend precoding 

matrix indicator (PMI) in a pre-defined codebook. The 

aforementioned process then mandates two robust 

system requirements, e.g. DL reference symbol for 

channel estimation, and feedback codebook for channel 

quantization. With a very large number of antennas, the 

DL pilot overhead will significantly impact the system 

throughput, whereas codebook design becomes 

increasingly complicated. How to efficiently acquire 

CSI at the eNB is therefore a major challenge. 

Compared to FDD system, a major advantage is found 

in TDD system where UL/DL channel reciprocity can 

be exploited to substantially reduce the feedback 

overhead and UE complexity. The rest of this paper is 

dedicated to the issue of CSI acquisition for massive 

MIMO, in both TDD and FDD networks. 

 

3. CSI Acquisition Method 
In this section we discuss practical CSI acquisition 

methods in the context of massive MIMO deployment.  

UL/DL recipriocity with realisitic interference 

feedback - TDD 

If UL/DL reciprocity holds, the DL channel 
k
0H  

measured in the uplink, the eNB can readily calculate 

the optimal precoding matrix
k
0w  (3). 

It is worth noting that the majority of exiting 

literature assumes ideal UL/DL reciprocity including 

the channel 
k
0H

 
and interference covariance nnR . 

Although channel reciprocity holds in TDD, 

interference covariance nnR  in (2) cannot be estimated 

by eNB in the uplink and needs to be reported. In one 

example, the average received noise/interference power 

intP can be reported as 

))((int nndiagavgP R ,             (4) 

This incurs feedback of a single quantized real-value 

scalar intP , whose overhead is equivalent to 

conventional CQI.  

Another alternative is to report the quantized 

diagonal component of the interference matrix as  

)( nnnn diag RR  ,        (5) 

resulting in an overhead of rN  real-value scalars. 

Given that practical UE has a rather small number of 

receive antennas (e.g. 2rN receive chains in most 

commercial UE), the feedback overhead and UE 

complexity is still well acceptable.  

 

 

Two-dimension CSI quantization  - FDD 

For FDD system with a very large number of eNB 

antennas (e.g. 21NN =64 antennas), the most 

straightforward approach is to design a high-dimension 

codebook of size- 21NN , and report a single PMI 

corresponding to the total array size 21NN . However, 

codebook design is generally a very complicated task 

and lacks future extendibility. Secondly, to ensure 

satisfactory accuracy, massive MIMO requires a 

gigantic quantization codebook, which increases the 

PMI search complexity, UE power consumption and 

UL overhead tremendously. 

To circumvent these problems, in this paper we 

study a practical two-dimension feedback approach, 

where the UE quantizes the elevation domain CSI and 

azimuth domain CSI jointly to maximize the system 

throughput. Specifically, the UE reports two PMIs, 

where PMI1 indicating the elevation domain, and PMI2 

indicating the horizontal domain.  

First it is assumed that the system has two pre-

defined codebooks 1C  and 2C  for elevation and 

azimuth quantization respectively. Codebook 1C  

comprises a set of 1C complex precoding matrices 

 1111 ,...1,
1

NrC rN  W , where each precoder has 1N

rows, and 1r is the number of columns (e.g. rank). 

Likewise, codebook 2C is denoted as 

 2222 ,...1,
2

NrC rN  W . 

For simplicity of notation, the subscript l denoting 

the cell index is omitted in the ensuing discussion. It is 

assumed that DL reference symbol allows channel 

estimation of the full DL channel estimation k
H . The 

UE then jointly selects the optimal precoder pair 

 2211 , CC  ww , such that the total throughput for 

serving cell 0 is maximized as 

).1(logmaxarg

),(
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      (6) 

Herein rCQI  is the post-beamforming CQI for the r-th 

data stream, 21,...1 rrr  . For instance for a UE with 

MMSE-IRC receiver, rCQI can be calculated as  
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(7)     

and k
w denotes the composite 3D-MIMO precoding 

matrix of dimension RNN 21  corresponding to each 

 2211 , CC  ww  combination denoted as  

21 WWw k                                  (8) 



IEEE COMSOC MMTC E-Letter 

http://www.comsoc.org/~mmc 22/59       Vol.9, No.6, November 2014 
 

Herein   represents the Kronecker product,   rr ,.

denotes the r-th diagonal element. 

Intuitively, it can be seen that this two-dimension 

feedback involves searching two individual precoders 

1w of dimension 1N  and 2w of dimension 2N in two 

codebooks. The Kronecker product of 21 / ww  is 

specifically based on the assumption of 2D planar 

antenna arrangement. Such a two step precoder method 

provides several practical benefits for system 

implementation. Firstly, a much smaller codebook can 

be used for each spatial dimension separately, instead 

of reporting the full channel with a gigantic codebook. 

It then becomes possible to use the existing LTE 

codebooks for each dimension. Secondly, PMI1 and 

PMI2 can be reported separately, making it possible to 

reuse the existing CSI feedback channel (e.g. 

PUCCH/PUSCH in LTE) with very minor system 

impact. 

 

Antenna virtualization 

Massive MIMO can be deployed as an eNB 

implementation technique, transparently from the UE’s 

perspective. Specifically, the 1N physical antennas in 

each column can be virtualized into a single virtual 

antenna port and associated with one reference pilot. 

From the UE’s perspective, each column of physical 

antennas appear as a single virtual antenna because 

they all transmit the same pilot symbols, hence the 

eNB antenna panel appears as a conventional 2N -

antenna array to the UE.  

 

4. Performance evaluation 

TABLE I.  EVALUATION ASSUMPTION 

eNB antenna 

configuration 

Horizontal: 8，X-pol (+/-45), 0.5λ 

Vertical: 10，0.5λ 

UE antenna 

configuration 
2, X-pol (0/+90) 

Scenarios 3D-UMi 3D-UMa [8] 

Bandwidth and carrier 10MHz 

Carrier frequency 2GHz 

CSI feedback 
Subband size (6PRB) 

5ms feedback periodicity  

MU-MIMO maximum 

number of pairable 

UEs 

2/4/6/8 

Traffic model Full buffer 

 

System-level simulation results are presented to 

demonstrate the performance with various CSI 

acquisition methods discussed in the previous sections. 

DL/UL reciprocity is assumed for TDD system and the 

diagonal components of interference matrix are fed 

back by UE. Two-dimension CSI quantization and 

antenna virtualization schemes are evaluated for FDD 

system. For antenna virtualization, each column of 

antenna array is virtualized to one vertical antenna port 

using the following beamforming vector 

1

1

,,1),cos)1(
2

exp(
1

Nm
etiltv

dmj
Nm

 



w

         (9) 

where 1N  is the number of physical antennas in the 

elevation domain (Fig. 1),   and vd denote the wave 

length and antenna elements spacing. The electric 

antenna down-tilting etilt equals 102 degree in the 

simulation. 45  antenna polarization is assumed with 

8 horizontal antenna elements in each row and 10 

vertical antenna elements in each column. 

The simulated scenario is compliant with the 3GPP 

system-level simulation guideline with 19 cell sites, 57 

sectors and 10 UEs dropped per sector. Urban macro 

(UMa) and urban micro (UMi) spatial channel models 

recently endorsed in 3GPP for massive MIMO 

evaluation [8] are used to realistically capture the 

spatial domain propagation property. Dynamic 

SU/MU-MIMO switching is assumed as the 

transmission scheme. For MU-MIMO, the number of 

paired UEs in any subframe is dynamically computed 

by the eNB, upper bounded by the maximum number 

of pairable UEs in Table I. For two-dimension CSI 

feedback, LTE Rel-10 codebook is used in the 

horizontal domain and DFT codebook is used in the 

elevation domain. 

 
Figure 1.  Cell average SE  

The cell average spectral efficiency (SE) and 5% 

cell-edge SE are evaluated for each CSI acquisition 

methods and channel models. Fig.2 illustrates the cell 

average SE results, where ‘TDD’, ‘Two-dimension’ 

and ‘Virtualization’ denote TDD system with 

reciprocity, FDD system with two-dimension CSI 

quantization and antenna virtualization, respectively.  

According to Fig.2, the cell average SE is a 

monotonically increasing function of the maximum 
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number of pairable UEs; however, for FDD, the 

average SE quickly saturates when the maximum 

number of pairable UEs becomes larger than 6. 

Comparing different CSI acquisition methods, TDD 

system based on reciprocity achieves the best average 

SE performance. When the maximum number of 

pairable UE is 6, TDD system demonstrates 44% gain 

compared to two-dimension CSI quantization in UMa 

and 56% gain in  UMi channel. For FDD system, two-

dimension CSI quantization scheme outperforms 

antenna virtualization scheme, achieving throughput 

gain of 22% gain in UMa and 41% gain in UMi. 

 
Figure 2.  5% cell-edge SE 

5. Conclusions 

This paper studied CSI acquisition for massive 

MIMO system in LTE. For deployment scenarios 

where UL/DL reciprocity holds (e.g. TDD), the DL 

channel can be inferred from UL measurement, 

allowing greater beamforming flexibility, reduced 

system overhead, and lower UE complexity. For 

scenarios without UL/DL reciprocity (e.g. FDD), a 

two-dimension feedback mechanism can achieve good 

trade-off between feedback complexity and 

performance.  
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1. Introduction 

Significant interest in enhancing wireless cellular 

network performance through the use of active antenna 

systems (AAS) has recently developed [1, 2], with 

AAS seen as an enabler for achieving both cell edge 

and cell average gains through advanced control of the 

elevation (i.e., vertical) dimension. Unlike traditional 

passive antennas, in AAS, the complete radio 

frequency (RF) transceiver chain is integrated into each 

antenna element, allowing the amplitude and phase of 

each element to be adaptively adjusted. Using a 2-

dimensional (2D) array, AAS provides control for the 

elevation dimension as well as the traditional azimuth 

dimension. This control enables a variety of new 

advanced multiple-input multiple-output (MIMO) 

techniques such as adaptive downtilt, vertical 

sectorization, and full dimension MIMO (FD-MIMO) 

[3, 4]. 

 

In existing cellular networks, without AAS capability 

at the base station (BS), a fixed vertical downtilt 

(achieved by mechanical or electrical control) has 

typically been used. The fixed downtilt can provide a 

certain level of inter-cell interference reduction and 

elevation beamforming gain [3], but is not optimal, 

especially in dense urban deployment scenarios in 

which users can be located in a wide range of 

elevations and the users’ distribution can change 

dramatically in 3-dimensional (3D) space over time. As 

a result, enhancement of system performance by 

leveraging the dynamic control of vertical beams that 

AAS enables has been actively studied in the Third 

Generation Partnership Project (3GPP) in the context 

of Long-Term Evolution Advanced (LTE-A).  

 

In line with the AAS study, a new 3D channel model 

has recently been developed in 3GPP which introduces 

the channel characteristics for the elevation domain for 

both low and high rise scenarios. The new model, 

which considers departure and arrival of multipath 

components for elevation angles as well as for the 

azimuth angles supported by the conventional 2D 

model, enables the elevation domain to be fully 

exploited when optimizing and evaluating advanced 

AAS-based MIMO techniques. 

 

In this letter, we evaluate the benefits of AAS using 

adaptive downtilt and vertical sectorization techniques 

in an LTE-A network.  The 3D channel considered in 

our performance analysis follows the latest 3GPP 

assumptions and agreements [5]. 

  

2. Adaptive Downtilt and Vertical Sectorization  

Adaptive downtilt and vertical sectorization are 

promising techniques for capitalizing on 2D antenna 

arrays and the independent control of antenna elements 

enabled by AAS. Adaptive downtilt dynamically 

optimizes the downtilt angle used in a cell according to 

the cell’s user equipment (UE) distribution to 

maximize elevation beamforming gain while reducing 

inter-cell interference. Vertical sectorization increases 

spatial reuse of time and frequency resources by 

forming multiple vertical sectors, each with a different 

vertical beam. Deployment examples for adaptive 

downtilt and vertical sectorization are shown in Figure 

1. 

 
(a) Adaptive Downtilt (b) Vertical Sectorization 

  

3 cells, each with adaptive 

vertical downtilt 

Single cell with multiple 

vertical sectors 

Figure 1. A cellular system supporting 

 adaptive downtilt or vertical sectorization. 

 

For our evaluation, we consider a multi-cell downlink 

LTE-A system equipped with AAS. Each BS (Evolved 

Node B (eNB) in LTE-A) controlling one or more cells 

is equipped with a 2D uniform rectangular array 

(URA) with    antenna elements, where    =    
   and    and    denote the number of antenna 

elements in the vertical and horizontal domains, 

respectively. Each cell has uniformly distributed UEs 

in both horizontal and elevation domains [5], with each 

UE having    antennas. The system has adaptive 

downtilt capability, where each cell can apply a cell 

specific downtilt in the elevation domain, and vertical 

sectorization capability, where each cell can 

simultaneously form two or more vertical sectors by 

applying different vertical beamforming vectors to the 

antenna elements in the vertical domain.   
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2.1 Adaptive Downtilt  

We consider a system with 𝑁  cells using adaptive 

downtilt and optimize the downtilt angle for each cell 

to maximize wideband signal-to-interference-plus-

noise-ratio (SINR) as a representative measure of 

system performance. Each cell is equipped with a URA 

which is capable of forming a vertical beam with a 

downtilt angle    in each cell   ,    { , … ,𝑁}  The 

beamforming weights to form each vertical beam, 

which are applied as a vector to the antenna elements 

of the URA in the vertical domain, can be found in [6]. 

The SINR of the UE 𝑢 served by cell  ,    , , is given 

by  

                      , =
  , (  )

  
  ∑   ,  (   )

 
    
     

 ,                   (1)  

where   , (  )  denotes the received signal power 

measured at UE 𝑢 from its serving cell  . In (1), the 

denominator consists of the noise power 𝜎 
  and the co-

channel interference from the interfering cells    
{ ,… ,𝑁},   ≠    We observe from (1) that    ,  is a 

function of downtilt    as well as the downtilt angles 

from all interfering cells   . Using SINR for 

optimization therefore requires joint optimization 

across the whole system.  

 

The system-wide optimization problem can be very 

complex due to the fact that all cells are coupled. We 

therefore use an approximation which is a relatively 

simple and efficient closed-loop scheme. We first 

assume a candidate downtilt set consisting of   downtilt 

angles,  ̂   =   ̂ , … ,  ̂  , from which downtilt angles 

may be selected in each cell. We then restrict the joint 

design to be over a neighboring cell set (a subset of the 

system set),      =   ,… ,    where    𝑁  since the 

interference from the neighboring cells will be the 

dominant interference. For other interfering cells not 

belonging to the neighboring cell set, the downtilt 

angles can be randomly chosen as one entry of   ̂    to 

approximate the interference. Within the neighboring 

cell set, the optimal downtilt angle for each cell can 

now be obtained by maximizing the sum capacity 

based on wideband SINR,     , , in which inter-cell 

interference is limited to the neighboring cell set, i.e., 

 

[  
   

, … ,   
   

, … ,   
   

]                                                    

=         ,   ,…, ∑ ∑     (    , )
  
     

   ,     (2)                                      

 

subject to      ̂    and   𝑠      , where   is the 

cardinality of the neighboring cell set and    is the 

number of UEs within cell 𝑠.  

We can obtain the solution for (2) by exhaustively 

searching among the neighboring cell set      and the 

downtilt candidate set   ̂   . For this scheme, 

coordination among cells can be limited to 

coordination of downtilt angles among the cells of a 

neighboring cell set, the size of which can be small to 

reduce the complexity. In our simulation, we assume 

  =   and evaluate performance for  =  ,  ,  . In the 

end, by repeating the process for each non-overlapping 

neighboring cell set,     , the downtilt angles for the 

whole system can be obtained.  

 

To achieve an adaptive downtilt implementation in an 

LTE-A system, we use the procedure shown Figure 2, 

involving UE feedback of the existing LTE-A 

measurement of reference signal received quality 

(RSRQ) which can be used to approximate wideband 

SINR in a practical system.  As shown in the figure, the 

eNB sends reference signals applying each downtilt 

angle from a pre-defined downtilt candidate set. UEs 

measure RSRQ for each candidate downtilt and feed 

this information back to the eNB. Finally the eNB 

selects the best downtilt angle to maximize the sum 

capacity according to (2).  

 

Determine a downtilt 
candidate set based 
on offline simulation  

eNB sends 
reference signals 

using each candidate 
downtilt

UEs measure RSRQ 

and send feedback

to eNB

eNB selects the best 
downtilt giving 
highest utility

  
Figure 2: An adaptive downtilt procedure 

in an LTE-A network. 

Table I shows the performance benefit of the adaptive 

downtilt over the fixed downtilt with respect to cell 

average and cell edge spectral efficiencies. The system 

level simulation assumptions are summarized in the 

attached Annex.  

Table I: Cell average and cell edge spectral efficiency of 

fixed and adaptive downtilt in bits/s/Hz and % gain. 
Fixed downtilt 

Fixed 

downtilt 

98o 100o 102o 104o 

Cell  

average 

1.96 

(-10%) 

2.10 

(-3.7%) 

2.18 

(0%) 

1.82 

(-16%) 

Cell  

edge 

0.075 

(-0.1%) 

0.059 

(-20%) 

0.074 

(0%) 

0.053 

(-28%) 

Adaptive downtilt 

Downtilt 

candidate set 

[100o,102o] [98o,100o,102o] [96o,98o, 

100o,102o] 

Cell  

average 

2.25 

(3.2%) 

2.28 

(+4.6%) 

2.29 

(+5.1%) 

Cell  

edge 

0.076 

(+2.7%) 

0.080 

(+8.1%) 

0.082 

(+11%) 

 

The performance for three adaptive downtilt candidate 

sets and four fixed downtilts are compared where gain 
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(in percentage) is with respect to the baseline of a fixed 

downtilt of 102°. From the results, it can be seen that 

the adaptive downtilt scheme achieves up to 5% cell 

average and 11% cell edge spectral efficiency gain 

over the fixed downtilt baseline.  

 

2.2 Vertical Sectorization  

We now consider a system using vertical sectorization 

in which there are 𝑁  cells and   vertical sectors for 

each cell. The vertical sector   in cell   can be formed 

with a vertical beamforming vector with elevation 

angle   
 ; thus,   vertical beamforming vectors with 

different elevation angles are required to form   

vertical sectors. Since multiple vertical beams are 

transmitted through the same set of transmit antennas, 

the total transmission power should be split into   

vertical sectors with a power split ratio which can be 

flexible.  

 

A UE served by a cell   with a vertical sector   

experiences interference from the other cells    
{ ,… ,𝑁},   ≠    and the other vertical sectors 

   { ,… , },  ≠   in the same cell  . Assuming 

equal power split for   vertical sectors, the wideband 

SINR of UE 𝑢 in cell   served by the vertical sector 

 ,    , , , is given by  

 

   , , =
 

 
  , , (  

 )

  
  

 

 
∑   , ,  (  

  
) 

    
    

 ∑  ̃ ,  
 
    
    

,        (3)  

 

where 
 

 
  , , (  

 ) denotes the received signal power 

measured at UE 𝑢 from its serving vertical sector   in 

cell  . In (3), the denominator consists of the noise 

power 𝜎 
 , the inter-sector interference in the same cell  

 

 
∑   , ,  (  

  
) 

    
    

, and the sum of the inter-cell 

interference from each cell   ,  ̃ ,    .   Inter-cell 

interference  ̃ ,  ,can be expressed as the summation of 

interferences from all vertical sectors in cell   , i.e., 

 ̃ ,  , =
 

 
∑   ,  , (   

 ) 
   . 

 

For simplicity, we consider a system with two vertical 

sectors ( =  ) respectively formed with elevation 

angles   
 =    (outer sector) and   

 =    (inner 

sector) as shown in Figure 1(b). In order to achieve the 

desired spatial reuse gain, the elevation angles for the 

sectors should be properly chosen.  

 

Table II shows the system performance according to 

various sets of elevation angles when an MMSE 

receiver is used at a UE. As seen in the table, the 

vertical sectorization with the elevation angle set 

(  =    ,  =     ) provides the best cell average 

performance among the sets in the system we 

considered.  

 
Table II: System performance according to the set of 

elevation angles for two vertical sectors in bits/s/Hz. 
Vertical Sectorization (M=2) 

Elevation 

angle set 

[  ,   ] 

[93o,96o] [96o,99o] [99o,102o] [102o,105o] 

Cell  

average 
2.58 2.59 2.80 2.77 

Cell edge 0.079 0.068 0.076 0.088 

 

Although vertical sectorization increases signal 

strength per UE and spatial reuse of time/frequency 

resources, both of which improve system performance, 

it suffers from strong intra-cell interference even with 

single-user MIMO (SU-MIMO) operation due to the 

increased number of vertical sectors. To overcome the 

dominant interference from other vertical sectors, LTE-

A interference mitigation schemes can be used such as 

Network Assisted Interference Cancellation and 

Suppression (NAICS) in which an advanced UE 

receiver can cancel out dominant interference using 

symbol level interference cancellation (SLIC). 

Network assistance for the cancellation process 

involving providing interferer information to the UE is 

currently being discussed in 3GPP [7]. In the case of 

NAICS, the receiver peformance improves when the 

dominant interference power becomes stronger since 

the estimation error for the dominant interference 

signal gets reduced. A system with vertical 

sectorization will, therefore, provide higher system 

throughput as the number of UEs equipped with 

NAICS receivers increases in the cell. 

 

 
Figure 3: UE throughput performance according to the 

number of vertical sectors and UE receiver type. 

 

Figure 3 shows the performance improvement that can 

be achieved when vertical sectorization and an 

advanced receiver (SLIC) are utilized. As shown in the 

figure, the vertical sectorization provides significant 
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UE throughput gain as compared with that for the 

single vertical sector case. In addition, the UE 

throughput distribution is even further improved when 

the NAICS receiver is used at the UE. 

 

3. Conclusion 

In this letter, we showed that adaptive downtilt and 

vertical sectorization are promising techniques for 

future wireless systems to exploit the benefit of 

additional control in the vertical domain enabled by  

AAS. When optimizing downtilt based on wideband 

SINR, adaptive downtilt achieves up to 11% cell edge 

and 5% cell average spectral efficiency gain compared 

to the baseline system with fixed downtilt. In addition, 

vertical sectorization provides even higher performance 

gain by increasing spatial reuse of time and frequency 

resources using multiple vertical beams. Use of 

advanced receivers and NAICS by the UE provides 

significant additional gain as the dominant interference 

from the vertical sector can be removed.  
 

Annex 
 

Table A: System Level Simulation Assumptions 
Parameter Assumption 

Network layout 7-site 21-cell wraparound 

Channel model 3D Urban Macro (UMa)  [5] 

 

eNB antenna configuration  

  =  ,   =   ,   𝜆   spacing in 

H/V, cross-polarization 

UE antenna configuration    =  , cross-polarization   

UE attachment  Based on reference signal 

received power  formula in [6] 

Adaptive downtilt  

angle candidates  

[96o, 98o, 100o,102o] 

Vertical sectorization  [93o, 96o], [96o,99o], [99o,102o], 

[102o,105o] 

Number of UEs per cell   10 

UE distribution uniformly dropped  

Traffic model  full buffer 

Scheduler  proportional fair (PF) 

Transmission scheme SU-MIMO with rank adaptation 

Feedback Subband  channel quality index,  

wideband precoding matrix index    

Link adaptation Practical with  

open loop link adaptation 

Receiver  MMSE, NAICS 
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1. Introduction 

Last decades have witnessed ever-increasing demand 

for higher data rates in wireless networks. To cater for 

this demand, many advanced physical layer techniques 

have been developed, e.g., multiple input multiple 

output (MIMO) with orthogonal frequency division 

multiplexing (OFDM). However, with linear 

throughput improvement but the exponential growth on 

the data traffic, the gap between the demand and 

supply has been increasingly widened. To solve the 

problem, the next technology we could resort to is 

massive MIMO (a.k.a. large-scale MIMO, full-

dimension MIMO, or hyper MIMO), which 

significantly increases the system capacity by 

employing a large number of antennas at the base 

station. As an emerging and promising technology, 

large-scale MIMO also enjoys many advantages such 

as low-power, robust transmissions, simplified 

transceiver design, and simplified multiple access layer 

[1], [2], in addition to enhanced capacity. 

 

In general, the more transmit antennas, the more 

degrees of freedom a massive MIMO system can 

provide, resulting in higher reliability or larger 

throughput. However, due to the difficulties of 

acquiring channel state information at the transmitter 

side (CSIT), it is challenging to simultaneously support 

a large number of users [2]. Most of the existing works 

on massive MIMO systems consider the time division 

duplexing (TDD) mode [3]-[5], within which by 

exploiting channel reciprocity, the downlink channel 

can be estimated through uplink training. Unfortunately, 

there is no such privilege in frequency-division-

duplexing (FDD) systems. 

 

There are much more FDD (    ) than TDD (   ) 

LTE licenses worldwide. It is therefore of great 

importance to investigate the massive MIMO design 

for FDD systems. To reduce pilot resources and the 

channel state information (CSI) feedback in FDD 

systems, a two-stage precoding scheme has been 

proposed in [6] recently. Firstly, the users in service are 

divided into groups, while each group of users have 

similar second-order channel statistics (i.e., transmit 

correlation). The same pre-beamforming, or the first-

stage precoding, is then used for each group of users 

semi-statically. Next, with reduced dimensions on the 

effective channel, simplified channel feedback can be 

realized and the second-stage dynamic precoding can 

be applied. The performance of such system design is 

largely dependent on user grouping. In [7], a K-means 

clustering scheme, based on chordal distance as the 

clustering metric, is introduced for user grouping. In 

this letter, instead of chordal distance, we propose 

weighted likelihood similarity measure and hierarchical 

clustering. By theoretical analysis and simulations, we 

validate the proposed approaches. 

Once user groups are formed, another important issue 

is user scheduling, i.e., selecting users for transmission 

based on instantaneous channel conditions. In this 

letter, we propose a dynamic user scheduling method. 

If there are only a few active users, some groups may 

barely have users while some other groups are 

overloaded. Therefore, we also consider the load 

balancing problem and develop an effective solution 

algorithm. Note that some results can also be found in 

[8][9].  

 

2. Problem Statement and Main Results 

We consider a downlink system with M antennas at the 

base station (BS) and a single antenna at each user 

terminal (UT). Denote    as the received signal at 

user𝑘, 𝑘 =  , , … , 𝐾. The signals received by all UTs y 

can be written as 

 =𝑯𝑯𝑽𝑑+𝑧=𝑯𝑯𝑩𝑷𝑑+𝑧,   (1) 

where ()  denotes the Hermitian of a matrix;  , of 

dimension   𝐾, is the actual channel between the 

BS and the users; 𝑽 is the precoding matrix of 

dimension    ; d is the data vector of dimension 

 ×1; and z is the zero mean circulant symmetric 

complex Gaussian noise vector. The key idea is to 

decompose 𝑽 into 𝑩 and 𝑷, where 𝑩 is pre-

beamforming matrix of dimension    ; 𝑷 of 

dimension    , is designed to suppress the 

interferences within each group.  

 

1) User grouping schemes. 

To design the pre-beamforming matrix 𝑩, we need to 

group users. Different from the chordal distance based 

K-means user grouping scheme [7], we first propose a 

weighted likelihood function as the similarity measure 

between a user and a group, which is defined as: 

ℒ(𝑅𝑘,𝑉 )=∥( 𝑘Λ𝑘1/2)𝐻𝑉 ∥   (2) 
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In addition to the new similarity measure, we also 

propose new user grouping schemes, which employs 

the agglomerative hierarchical clustering method. 

Different from the K-means approach, which 

essentially looks at all possible combinations of users 

and groups, the agglomerative hierarchical clustering 

method starts with each individual user forming a user 

group. It then proceeds by a series of successive 

mergers based on certain criteria. Eventually, all users 

can form one single group. We can terminate the 

scheme when the desired number of groups is reached. 

One important issue in hierarchical clustering is how to 

define the similarity measure or distance between 

existing groups and newly defined groups (called 

linkage methods). We propose to use weighted average 

linkage as follows. 

𝑑𝑣𝑖,𝑣𝑗,𝑣𝑞=(𝑑𝑣𝑖,𝑣𝑞+𝑑𝑣𝑗,𝑣𝑞)/2,   (3) 

where 𝑣 , 𝑣  and 𝑣𝑞 are groups. 

Given chordal distance, weighted likelihood similarity, 

K-means clustering and hierarchical clustering, we 

could combine either two of them to form a complete 

user grouping scheme. 

Proposition 1: The complexity of K-means clustering 

is 𝛰(𝐺𝐾𝐾𝐺(2 3+ 2)) for chordal distance and 

𝛰(𝐺𝐾𝐾𝐺[(𝑟∗)3+( 𝑟∗2)) for weighted likelihood 

similarity measure, where 𝑟∗ is the effective rank of 𝑅 , 

i.e., the number of columns in  𝑘. 

Proposition 2: The complexity of hierarchical 

clustering is 𝛰(𝐾(𝐾 −  )(      )  )  for chordal 

distance, and 𝛰(𝐾(𝐾−1)[(𝑟∗)3+( 𝑟∗ )  ) for 

weighted likelihood similarity measure. 

 

2) User scheduling scheme. 

With user groups being formed, we can obtain the pre-

beamforming matrix 𝑩  for each group g. At a 

particular time slot, based on the instantaneous channel 

conditions of the users, we dynamically schedule a 

subset of users in each group for the transmissions in 

this time slot. 

In [7], a MAX and an ALL user scheduling algorithm 

are presented. Different from these approaches, we 

propose a dynamic user scheduling algorithm that 

schedules users in a greedy manner. In particular, at 

each step, the proposed algorithm only schedules the 

user that can achieve the largest gain in the system 

throughput. The proposed algorithm is presented in the 

Algorithm 1. 

 

3) Load balancing scheme. 

In practical applications, many users may gather at one 

geographic location (e.g., in a skyscraper). If we design 

the precoder exactly as discussed, these users will form 

a big group. It would be desirable to offload some of 

the users to other groups, to achieve fairness among the 

users. This is because with more members in a group, 

each member's chance of getting scheduled for 

transmission will be smaller. 

 
Algorithm 1. Greedy Algorithm for Dynamic User 

Selection and Beamforming. 
 

We develop a user grouping method considering group 

load balancing and user proportional fairness. The 

problem can be formulated as: 

 
where 𝑥𝑘  is 1 if user k is connected to group g, and 0 

otherwise;  ̅  
 is the rate for user k in group g. By 

adopting a two-tier dual decomposition approach, we 

could obtain the optimal solution to the above problem. 

 

3. Performance Evaluation 

Simulations are performed to evaluate the proposed 

schemes. We fix  =     and group number 𝐺=6. 

 
Fig. 1 System sum rate versus the number of users. 
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We can see from Fig. 1 that all our proposed schemes 

outperform the scheme in [7]. In particular, hierarchical 

clustering greedy user selection with weighted 

likelihood has the highest system throughput.  

 
Fig. 2 Group sizes for user grouping with joint group load 

balancing and precoding design when 𝐾 =   . 

 

We can see from Fig. 2 that the maximum difference of 

the scheme without considering load balancing is 12, 

while this number is 4 in our proposed iterative scheme. 

Thus the loading of users is much more balanced in our 

proposed scheme. 

 

4. Conclusions 

In this letter, we have studied the user grouping and 

scheduling problems based on a two-stage precoding 

framework for FDD massive MIMO systems. We have 

proposed weighted likelihood similarity measure and 

hierarchical clustering for user grouping. We have also 

proposed a dynamic user scheduling scheme and a user 

grouping algorithm to achieve load balancing and user 

fairness for FDD massive MIMO systems. The efficacy 

of the proposed schemes has been validated with 

analysis and simulations. 
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1. Introduction 

Massive multiple-input multiple-output (MIMO) is a 

key enabler to improve the spectral efficiency in future 

wireless systems. The evolution to cellular systems 

with a larger number of antennas at the base station is 

essential to enhance the cell capacity without extra 

spectral resources. In the literature, it was shown that, 

in a single-cell system, it is always advantageous to 

have an unlimited number of antennas at the 

transmitter [2] and also at the receiver [4]. In [2], the 

author proposed massive MIMO systems using a 

simple linear algorithm such as maximal ratio 

transmission (MRT) in downlink and maximal ratio 

combining (MRC) in uplink. It was shown that the 

system capacity with an unlimited number of antennas 

is only degraded by pilot contamination in a multi-cell 

network. In [5], the downlink performance of MRT and 

zero-forcing (ZF) beamforming for massive MIMO 

systems were investigated. With MRT precoding, inter-

user interference is eliminated when the transmitter has 

unlimited number of antennas. 

The assumption of an infinite number of antennas, 

however, is not feasible in practice. In [6] and [7], the 

authors investigated the capacity of the numerous but 

finite antenna systems for perfect channel state 

information (CSI) and imperfect CSI scenarios, 

respectively. The authors in [3] implemented a many 

antenna infrastructure system with 64 transmit 

antennas. From the experimental results of [3] and 

theoretical results of [6], it was shown that there is a 

large performance gap between MRT and ZF with 

respect to the number of served users when the number 

of transmit antennas is large but limited. 

Another approach to enhance the performance of 

cellular networks performance has been considered 

from architecture, that is, cloud radio access networks 

(C-RAN). In these networks, the base band unit (BBU) 

processes Layer-2/Layer-1 functions and generates (or 

decodes in uplink) in-phase and quadrature phase (IQ) 

data for transmission at the remote radio head (RRH) 

(or reception in uplink).  

The BBUs and RRHs are connected via a high speed 

fronthaul link such as optical fibers [8]. With such 

centralized BBU and distributed RRH structures, 

network-wide performance can be more enhanced by 

exploiting real-time joint scheduling or network MIMO 

as in [6], especially, in managing inter-cell interference. 

In addition, due to the centralized computational 

resources at the BBU, mobile operators can reduce the 

installation and operation cost. There are few 

researches on fronthaul data transport  issue in massive 

MIMO employed C-RANs.. 

 

 
Figure 1. Two fronthaul data transport solutions. 

 

2. Fronthaul Transport Methods in Cloud MIMO 

In C-RAN, the transmit signals for each RRH antenna 

are processed in the BBU pool and transported to the 

RRH through a fronthaul link. The transmit radio 

signals are the mix of each stream’s signal for each 

antenna, which is, determined by the beamforming 

technique chosen by the BBU, and the precoded data 

symbol with a weight vector.  

 

IQ Data Transport. 

For MIMO transmission, the simplest way for a BBU 

to inform an RRH of transmit signals is to transport the 

IQ-data samples of radio signal. That is, the BBU, 

“after precoding” the data symbols, transports the radio 

signal vector x to the RRH in the form of IQ-data.  

Then, the required fronthaul bit-rate when radio signals 

are transported “after-precoding” is  

after sub sym IQ .R N f b M   (1) 

Nsub is the number OFDM subcarriers during a symbol 

duration and fsym is the symbol frequency. The number 

of required bits to represent one pair of IQ sample and 

the number of active antennas at the RRH are denoted 

by  bIQ and M, respectively. 

 

Separate Transport of Precoder and Data Symbol. 
Another fronthaul transport solution for MIMO 

transmission at RRHs is separate delivery of 
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unmodulated data symbols and the precoder “before 

precoding” them. Fig.1 shows the difference between 

“after-precoding” and “before-precoding” methods in a 

fronthaul link to transport radio signal information for 

MIMO transmission at an RRH. The data symbol 

vector d and the precoding matrix W can be carried 

separately before the data symbols are ever precoded. 

In this case, the length of the data symbol vector equals 

the number of users, K.  

By separately transporting precoding vectors and data 

symbols, the precoding vectors does not need to be 

updated with the identical time scale of data symbol. 

Considering that K × M precoding matrices are 

delivered with frequency of fpre, the bit-rates required 

for precoder delivery in the fronthaul link is 

before sub pre IQ sub sym DS .R N f b MK N f b K         (2) 

The number of bits to represent data symbol, bDS, 

depends on the possible number of modulation symbols. 

The data symbols are updated every symbol time as the 

transmit signals in “after-precoding”, but the data 

symbols for each user are commonly used in 

generating the transmit signal of all the transmitting 

antennas. This is effective in the amount of fronthaul 

data especially when the number of antennas is much 

larger than that of users (i.e., K ≪M).  

In heterogeneous channel scenario where users 

experience different channel coherence times, the 

precoding vector of each user terminal can be updated 

according to its channel coherence time. 

 

3. Wireless capacity under given fronthaul capacity. 

Wireless sum-rates of MRT/ZF beamforming. 

The received signal at the j-th user is expressed as 

1,

k
T T

j f j j j f j j

j

y h w d h w d n 
 

   ,          (3) 

where T

jh is the column vector of the j-th user’s channel. 

We use the following precoding matrix for MRT and 

ZF beamforming methods. 

 MRT
ˆ  1 1 2 K= c =   *

W H w w w .                        (4) 

   ZF
ˆ ˆ ˆ  

-1

2 1 2 K= c = * *
W H HH w w w ,          (5) 

where Ĥ estimated channel coefficient matrix from 

pilot signals, and c1 and c2 are constants for power 

normalization. For simplicity, we assume identical 

average SNR and precoding matrix update interval of 

considered users. Then, the ergodic capacity lower 

bounds of MRT and ZF beamforming in a single cell 

are given by [7] 

 

MRT 2log 1
( 1)( 1)

f r r

f r r

M
C K

K

  

  

 
     

         (6) 

ZF 2log 1
1

f r r

f r r

M K
C K

K

  

  

 
     

            (7) 

The optimal number of active antennas with a 

limited fronthaul capacity. 
From (6) and (7), it can be noticed, that the sum-rates 

of both beamforming schemes monotonically increase 

with the number of active antennas M. This means that 

if other variables are constant, using a larger M is 

always better. In this sense, for the given fronthaul link 

capacity, Cfront, the number of active antennas that 

maximizes the wireless capacity with “after-precoding” 

fronthaul transport is 

 *

after 1 totmin , ,M M                            (8) 

where Mtot is the total number of deployed antennas at 

the RRH and 
1 front sub sym IQ/( ).C N f b   

 On the other hand, the required bit-rates of “before-

precoding” transport depends on the number of users 

and the precoding update frequency as 

* 2
before 3 totmin , .M M

K




  
   

  

                (9) 

Here, 
2 front sub pre IQ( )C N f b  and 

3 sym DS pre IQ/( ).f b f b   

Thus, as more users are simultaneously served, less 

number of antennas can be activated. Under the 

following condition, total number of deployed antennas, 

Mtot , can be utilized.  

 front sub pre IQ tot sym DS .C N f b M f b K   (10) 

By substituting (8) and (9) into (6) and (7), we can 

obtain the capacity lower bounds of MRT and ZF of a 

single RRH in cloud MIMO system. The sum-rate 

curves with different average SNRs and precoding 

update interval are shown in Figs. 2,3,4, and 5. The 

used parameters are summarized in Table 1. 

 
Table 1. Evaluation Parameters.   

 

 
Figure 2. Sum rates (Mtot =64, Tpre =1 msec). 
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Figure 3. Sum rates (Mtot =64, Tpre =10 msec). 

 

 
Figure 4. Sum rates (SNR = 0 dB, Tpre =1 msec,). 

 

 
Figure 5. Sum rates (SNR = 0 dB, Tpre =10 msec,). 

 

4. Discussions 

The sum-rate curve is plotted with feasible K. We can 

see that with the “after-precoding” method, the sum-

rate curve is independent of the precoding matrix 

update interval and has the same tendency as was 

found in [6]. This is because the required IQ-data 

transport rate is independent of the precoding matrix 

update interval. On the other hand, the sum rates of the 

“before-precoding” method in Figs. 3 and 5 are larger 

than those in Figs. 2 and 4. This is because as fpre 

decreases, M increases, and the sum-rate monotonically 

increases with the number of antennas used for 

transmission. We see that with the “after-precoding” 

method, the maximum sum-rate of MRT is higher than 

that of ZF in the low SNR scenario, but, in the high 

SNR scenario, ZF has higher maximum sum-rates than 

MRT–a trend already shown in [6] and [7].  

 
Table 2. Selected variables.  

 

However, with the “before-precoding” method, ZF 

shows, in both high and low SNR scenarios, a higher 

maximum sum-rate than MRT. This is due to the 

flexibility of “before-precoding” in choosing M and K, 

whereas M is fixed with the “after-precoding” method. 

Table 2 represents Kmax and the optimal values of M 

and K, in Fig. 4. It is remarkable that with the “before-

precoding” method, lower K and larger M are chosen to 

maximize the sum-rate.  

This can be interpreted as that more antennas can be 

used at the cost of reduced multiplexing order to 

achieve higher sum-rates for low SNR users. Compare 

Fig. 2 and Fig. 4 and check that less number of users 

and therefore more antennas maximizes the sum-rates. 

Thus, we can derive desirable beamforming strategys 

according to fronthaul transport method and average 

user SNR. 

Note that we assumed different precoding weights are 

applied for each subcarrier. In practice, the same 

precoding weights can be applied over several 

subcarriers that have similar channel coefficients, 

leading to much lower required fronthaul rates of 

“before-precoding” for the given number antennas and 

users. 

 

 
Table 3. Desired beamforming technique in massive 

MIMO C-RAN. 

5. Conclusion 

In this article, based on our prior work, we 

investigated the effect of a limited number of antennas 

or users due to a fronthaul link constraint on the 

wireless sum-rate, which also depends on the 

beamforming strategy and the radio signal transport 

method in a fronthaul link.  

For the given fronthaul link capacity and user 

environments, the beamforming and the fronthaul 

transport methods can be jointly optimized to 

maximize the sum-rate.  
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INDUSTRIAL COLUMN: BIG DATA IN 5G NETWORKS: FROM END DEVICE TO 

PERSONAL CLOUD, EDGE CLOUD AND INTERNET CLOUD 

Guest Editor: Hassnaa Moustafa, Intel Corporation, USA  
hassnaa.moustafa@intel.com 

With the advent and proliferations of end user personal 

devices, sensors technologies and cloud infrastructure, 

big data is becoming an essential pillar for many 

applications making end-users status and their 

environment trigger the applications behavior in a 

context-aware manner. These applications are mostly 

real-time and they include, but not limited to, 

surveillance and monitoring, medical and wellness, 

multimedia and entertainment.   

 

Real-time applications require high throughput and low 

latency on one hand. On the other hand, the 

increasingly big data streams created by end-user 

devices, IoT, and M2M, require huge processing and 

storage capacity. This necessitates selecting the right 

database and storage level (personal cloud, edge cloud 

or Internet Cloud) combining data base solutions with 

big data technologies.    

 

5G from end device to personal cloud, edge cloud and 

internet cloud Newsletter associates big data with 

storage and network infrastructure technologies 

showing new approaches in storage (e.g. semantic 

storage based on big data) and new network 

infrastructure (e.g. private Internet, personal and edge 

cloud). Context-aware content adaptation techniques 

are also presented making use of big data. 

 

Similar to the continued evolution of the Internet, there 

is consensus amongst analysts that “Big Data” 

associated with the network, from the Cloud to the 

edge device, will drive a tremendous amount of 

innovation and disrupt existing business practices 

across industries. 

 

This special issue of E-Letter focuses on the recent 

progresses of big data usage, manipulation and storage 

in 5G applications. The E-Letter includes five papers 

from leading research groups, from both academia and 

industry laboratories, to report their solutions for 

meeting these challenges and share their latest results. 

David Cohen and Eve Schooler from Intel authored the 

first article, entitled “Data Inversion and SDN Peering: 

Harbingers of Edge Cloud Migration”. The article 

presents a data inversion model for IoT showing how 

the assumption that data will continue to be managed 

largely in the back-end data-center Cloud will not be 

the perfect match for Internet of Things (IoT). Yet, the 

Internet of Things is not exclusively about end-users 

who consume “Big Data” from the Cloud but 

increasingly is about interconnected devices deployed 

at the edge of the network who are the producers of 

“Little Data” flowing upstream toward the Cloud. The 

vision involves moving more of the intelligence, for 

example smart data analysis algorithms, closer to the 

edge and in the process enabling smart services, smart 

storage and smart data retrieval. The paper presents the 

expected changes in network infrastructure resulting 

from the massive deployment of IoT applications. 

These include CDNs, peering, overlays, and 

computation models, physical and virtual IoT clouds, 

multi-tenancy and Software Defines Network (SDN). 

 

The second article, entitled “Enabling Massive MTC 

Deployments with Stringent Performance 

Requirements”, authored by Tamper University and 

Ericsson Research and presents Machine Type 

Communication (MTC) that a very distinct emerging 

capability in 5G networks. The current and future long-

range LTE-powered IoT deployments are expected to 

see a huge influx of traffic collected by diverse MTC 

(machine to machine) devices. This allows information 

exchange between a device and another entity in the 

Internet or the core network, or between the devices 

themselves, which does not necessarily require human 

interaction. Even though the data from one particular 

device may be rather small, MTC devices are expected 

to generate massive amount of information “big data”. 

This paper reviews recent research efforts along these 

lines, with the ultimate goal of delivering efficient and 

affordable wireless connectivity at low power and with 

moderate large-scale deployment effort. In this context, 

3GPP LTE technology proved to support large-scale 

MTC installations in wide coverage, relatively low 

deployment costs, and simplicity of management, 

achieving “anytime, anywhere” wireless connectivity 

across a plethora of prospective MTC applications. 

 

The third article, entitled “Device to Device for 

Wearable Communication in 5G Networks”, presents 

the core technology of Green Communication. The 

article shows a new telecommunication model for 

wearable devices communication in 5G networks 

alleviating the disadvantages of the classical 

telecommunication model from 2G to 4G in terms of 

capacity and energy consumption. The paper 

introduces the concept of Embedded Internet where 

devices hold a full TCP/IP environment, an open 

operating system and a sharing storage. This allows 

Device to Device (D2D) network to be established in 
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few seconds and operates a local Internet. This solution 

guarantees an increase in the capacity of the networks, 

low power communication, local cloud storage 

matching the massive wearable devices needs and 

offloading the internet and core network from the big 

data transfer to and from Internet Cloud. 

 

The fourth article, entitled “Big data for Cloud based 

Video Adaptation”, is contributed by Orange Labs and 

it presents a new approach for using big data to 

optimize video service delivery in terms of saving 

network resources and enhancing end-user experience 

through creating new service. In this approach, Big 

data allows network operators and service providers to 

assess Quality of Experience (QoE) for video services 

and adapt the video delivery accordingly in terms of 

content adaptation (e.g. personalized content, content 

recommendation) and network/resources adaptation 

(e.g. adaptive bit rate, anticipated caching, multicast 

delivery ..). Big data is also applied in Cloud-as-a-

Service offers by Over the Top (OTT) actors and 

Telcos, allowing taking adequate decisions on 

infrastructure virtualization considering QoE coupled 

with context data as big data on the user, devices, 

network and the content itself. In this approach, big 

data coupled with video content delivery is promising 

for network operators and service providers in terms of 

maintaining the Average Revenue per User (ARPU) 

through QoE guarantees and reducing the allocated 

CAPEX/OPEX. In addition, OTTs find benefits in 

terms of service differentiation.  

 

The last article of this special issue is from AvidBeam 

and the title is “Overview of Big Data in Video 

Analytics”. This article provides an excellent overview 

on the video analytics applications making use of big 

data. The author first how big data can be useful in 

video analytics to spot unexpected problems (e.g. in 

surveillance applications). Then the article presents 

video analytics applications, principles, system 

components and data processing and describes the 

technical approaches and challenges in video analytics, 

which are mainly management of compressed video, 

accuracy of image detection and recognition. The paper 

shows the details of big data analytics for several real-

life use-cases. 

 

While this special issue is far from delivering a 

complete coverage on this exciting research area, we 

hope that the five invited letters give the audiences a 

taste of the main activities in this area, and provide 

them an opportunity to explore and collaborate in the 

related fields. Finally, we would like to thank all the 

authors for their great contribution and the E-Letter 

Board for making this special issue possible. 
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Data Inversion and SDN Peering: Harbingers of Edge Cloud Migration 

David E. Cohen and Eve M. Schooler 

Intel Corporation, USA 

{david.e.cohen, eve.m.schooler}@intel.com

Introduction. There is consensus amongst analysts 

that “Big Data” associated with the network, from the 

Cloud to the edge device, will drive a tremendous 

amount of innovation and disrupt existing business 

practices across industries. Sound like the continued 

evolution of the Internet? Not quite. The assumption is 

that data will continue to be managed largely in the 

back-end data-center Cloud. Yet, the Internet of Things 

is not exclusively about end-users who consume “Big 

Data” from the Cloud but increasingly is about 

interconnected devices deployed at the edge of the 

network who are the producers of “Little Data” flowing 

upstream toward the Cloud. The vision involves 

moving more of the intelligence, for example smart 

data analysis algorithms, closer to the edge and in the 

process enabling smart services, smart storage and 

smart data retrieval.  

 

The Internet of Things. Gartner defines the Internet of 

Things (IoT) as “the network of physical objects that 

contain embedded technology to communicate and 

sense or interact with their internal states or the 

external environment.” They assert that the number of 

connected Things is expected to climb from billions of 

devices to 10s of billions by 2020. By that time, IoT 

product and service suppliers are expected to generate 

$100s of billions in incremental revenue, mostly in 

Services. Needless to say such potential for growth has 

not gone unnoticed amongst competitors in the 

technology sector. For example, Intel’s third quarter 

2014 financial report explicitly calls out the Internet of 

Things Group revenue of $530 million, representing 14% 

year-to-year growth. 

 

Internet Evolution. The emergence of this fast-

growing IoT sector harkens back to the emergence of 

the Internet sector in the late 1990’s. Is the Internet a 

harbinger of the IoT to come? In the Internet global-

scale services like Google’s search and Facebook’s 

News Feed are consumed by end-users via their smart 

phones. None of this existed 20 years ago. For example, 

Akamai Technologies is a leader in the $4 billion 

Content Distribution Network (CDN) market. Prior to 

the late 1990’s this market didn’t exist. Further, content 

producers such as Google, Amazon, Facebook, among 

others, now run their own internal CDNs, which 

underscores the scope and importance of CDNs to the 

operation of the evolving Internet and emergent IoT. 

Another capability crucial to the operation of the 

modern Internet is the notion of peering and the use of 

Internet Exchange Points (IXP). The general perception 

is that tier-1 transit providers such as AT&T, Verizon, 

British Telecom, and China Telecom make up the 

backbone of the network and as such carry the bulk of 

the Internet’s traffic. In this model tier-1 providers peer 

amongst themselves and do not charge each other for 

transit costs. Instead, the tier-1s make their money in 

peering relationships with regional/tier-2 and local/tier-

3 network providers. Ultimately, these network 

providers provide connectivity to Internet Service 

Providers (ISP), who connect our businesses and 

residences at the very edges of the Internet to the rest 

of the infrastructure. 

 

While this model was prevalent in the early days of the 

Internet, today the Internet works quite differently. The 

vast majority of Internet content never leaves a region. 

Google, Netflix, Facebook, and other content providers 

like them all use peering relationships through regional 

IXPs to connect to the ISPs in that region. This so-

called “flattening of the Internet” trend began to 

emerge in the mid-2000’s. Today, this flattening is a 

global phenomenon with hundreds of IXPs operating 

around the world, which changes the notion that tier-1 

carriers provide the backbone of the Internet. 

 

These ingredients (end-devices, CDNs, peering, 

overlays, and computation) - have defined the 

leadership of the Internet. The leadership of the IoT 

will refactor these ingredients with a priority toward 

localization. 

 

IoT Service Providers. Discussion of the Internet 

evolution gives rise to an interesting question: Who 

will dominate the content distribution and network 

connectivity capabilities in the IoT? For many it is a 

foregone conclusion that leaders in the 

Telecommunications sector will lead in this market. 

Certainly, they have a clear advantage with their 

ownership of metro-area-based wireless and cellular 

networks along real-estate and right-of-way in these 

locations. However, these are the same key assets that 

should have given them the advantage as the Internet 

emerged. Yet, today no one argues that it is companies 

like Google, Facebook, Microsoft, and Amazon who 

have provided significant innovation and leadership to 

rival the Telcos in the Internet sector and stand just as 

good, if not a better chance of winning the IoT segment. 
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Though one must wonder if new disruptive IoT 

services may up end all of the current Internet players. 

Such uncertainty presents a challenge for 

mobile/cellular network operators, as an example. Over 

the next few years, they face having to make 

substantial investments to upgrade their current 

infrastructure to next-generation 5G technologies in 

order to support IoT, particularly for mobile 

multimedia applications. 
 

So what strategy to adopt to win in the IoT? The 

wireless and cellular networks are key components to 

winning the IoT. Currently they provide the main 

method by which edge devices attach to the IoT. 

Notably the role of phones as a driver of the 

architecture has never been greater, as mobile phones 

have surpassed laptops as the predominant means by 

which users access the web. However, as the 

warehouse-scale Cloud Service Providers (CSPs) have 

shown, whomever finds ways to gain control over end 

device services has an added advantage, as they 

showed by exploiting peering to go “over-the-top” of 

the Telcos’ back-end network services. This Over-the-

Top approach has the potential danger to, yet again, 

relegate the Telcos to being merely “Pipe Providers.” 

This brings into question the wisdom of investing in 

improvements to enable 5G when there is uncertainty 

on where the return on the investment will come from. 

 
Data Inversion. IoT will increasingly encourage 

localization of content, a shift in where data is 

produced and consumed. In fact, the IoT promises to 

bring with it “Data inversion”, where a growing 

number of end devices at the edge of the network are 

producers of content while consumers of the content 

will reside upstream, not only in back-end data center 

clouds, but also closer to the edge, at aggregation 

points or devices co-resident to where the data is being 

created. Effectively this represents an inversion of the 

content distribution model. In this inverted model, the 

IoT employs IP-peering techniques to prioritize 

localization in contrast to the Internet where peering is 

used to regionalize content. 

 

Industry-specific Partners and Multi-Tenant 

Infrastructure. Within a region or local area, network 

infrastructure must evolve to support the decentralized 

IoT and physical resources will need to be managed 

and shared. While such multi-tenant sharing is 

common in the broader Internet, within the IoT this 

capability must be scaled further, to be distributed 

across the local and regional environments. Assuming 

the Telcos take the lead on building out this physical 

connectivity, it is critical that they make this 

connectivity accessible to the broadest constituency of 

consumers and partners, who have tremendous 

expertise in specific verticals and as such can offer 

vertical-specific IoT services: for example, General 

Electric who is driving what they refer to as the 

“Industrial Internet”; Shell Oil who is reshaping its 

business by employing IoT technologies to change its 

business processes; John Deere who is aggressively 

employing IoT technologies to drive innovation in the 

agriculture/farming market. The reason why 

partnerships with leading enterprises will distinguish 

leadership in the IoT is that openness and collaboration 

will encourage needed innovation. As seen already, 

trying to “go it alone” or to limit access to only those 

willing to pay high tariffs and sign up for exclusivity 

are questionable strategies.  

 

Multi-Tenancy, Localization, and Computation-

Near-the-Data. The implication of Data Inversion is 

that increasingly much of the IoT content will remain 

near to where it is produced. The challenge becomes 

one of building “mini-Clouds” where Industry partners 

(aka “tenants”) can deploy their services, effectively 

migrating computation to the data. Unlike the 

MapReduce of the Internet era, moving computation 

close to the data means moving it out of warehouse-

scale data centers. The question is to where? 

 

The answer is close to the IoT devices producing the 

data. However, as discussed there are 10s of billions of 

these devices distributed at the farthest most outer 

boundaries of the network. Today, no such 

computational facilities exist in this “IoT wilderness”. 

 

Physical and Virtual IoT Clouds. One possibility is 

that the Telcos, Utilities, Municipalities and other 

property owners will transform their metro-area real-

estate assets into multi-tenant computational facilities 

where they can migrate compute closer to data 

generation. Then they can offer these facilities to their 

partner/customers like GE, Shell, and John Deere to 

deploy/operate IoT-centric services. Granted, these 

distributed resources may be considerably scaled down 

local versions of data centers. There are also 

opportunities for the even further scaled back version 

to be found in the Edge Cloud, which might reside 

physically in the smart neighborhood or smart home, or 

in the Personal Cloud, which might be embodied by all 

of the federated devices in the smart car or encompass 

the devices that are being carried by an individual on a 

daily basis. Cloud migration out of the data center will 

likely be disruptive in that cloud locations and 

resources may be owned and managed by more local 

proprietors, small businesses, households or individuals. 

Software Defined Networking for IoT. Bringing IoT 

capabilities to bear on a particular problem also will 

require a level of virtualization, such as decoupling 

mini-Clouds from their physical locations. A 
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company/tenant is then free to reassemble resources in 

support of the services they operate over their 

virtualized cloud. 
 

In the Internet, Content Providers have already done 

this. They deliver content to consumers via the use of 

“Overlay Networks.” The warehouse-scale CSPs 

leverage smart phones (tablets, laptops, etc.) as a way 

to “own” content distribution in a manner analogous to 

Rockefeller’s Standard Oil with its service model of 

refineries and gas stations. The smart phone is the 

Internet’s car, the CDN’s cache is the gas station, and 

the CSPs’ warehouse-scale data centers the refineries. 

Connecting all of this are IP-based overlay networks. 
 

These overlays and the means by which they are 

operated are increasingly managed via logically 

centralized, software-based services, collectively 

referred to as Software-Defined Networking (SDN). 

An SDN includes a controller that can be thought of as 

the overlay’s master mind. In a world where cloud 

control migrates closer to the edge, something like the 

SDN controller will play a strong role not only in 

managing the network for the cloud, but also in 

managing a diverse collection of additional services 

associated with the cloud, and also in creating peering 

relationships with other clouds through their SDN 

controllers. Furthermore, IoT overlay networks will be 

key to enabling edge devices finding IoT services 

operating in relatively close proximity.  
 

Vision for the Future. Although more questions have 

been raised than answered, these musings identify 

several important trends to heed as the IoT is under 

design and construction. Earlier the question was asked: 

who will own the CDN and connectivity services for 

the IoT, given who owns these services in the current 

Interent? Yet the more fundamental question is who 

will be the service providers of the IoT? Meaning, what 

broader range of services will and should the IoT offer? 

And what will they require of an increasingly 

distributed services architecture? 
 

If the pervasiveness of CDNs is any indicator, the IoT 

will be a place where content continues to reign. Thus, 

the need for a content-centric IoT architecture, possibly 

one where the functionality of CDNs is built in natively 

to the lower layers of the network, so that data is 

liberated to be shared across IoT applications and 

market verticals. IoT data is increasingly more likely to 

remain local to where it was generated and certainly 

within much smaller geographical regions than in the 

present Internet, where it might be used in a more 

localized fashion by IoT applications such as driverless 

cars and smart energy, and where data privacy has the 

opportunity to be managed more transparently. Thus, 

computation must be able to migrate to where the data 

and services reside. IoT services such as edge analytics, 

smart data pipes, trusted data as a service, data 

exchanges, are all data-driven services to enable. The 

vision is to repurpose SDNs and overlays as software-

defined clouds, not only to elevate and liberate data for 

re-use within the content-centric IoT, but also to 

support migration and localization of services to the 

farthest reaches of the network edge. 
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1. Introduction 

The Internet of Things (IoT) has recently developed as 

a novel concept where physical things (such as our 

surrounding objects) are extended with actuators, 

sensors, and identifiers, made discoverable through the 

network, and are tightly integrated into the 

infrastructure of the future Internet [1]. As traditional 

voice service revenues continue to shrink, mobile 

network operators are increasingly interested in the IoT 

applications to bridge in the growing revenue gap.  
 

A very distinct emerging capability that enables the 

implementation of the IoT is machine-to-machine or 

Machine-Type Communications (MTC). Industry 

reports indicate the considerable potential of the MTC 

market, with millions of devices connected over the 

following years, resulting in trillion-dollar revenues by 

the year 2020. According to [2], the concept of MTC 

may be defined as information exchange between a 

device and another entity in the Internet or the core 

network, or between the devices themselves, which 

does not necessarily require human interaction.  
 

The prospective MTC applications are numerous and 

generally cover the areas such as (i) secured access and 

surveillance, (ii) tracking, tracing, and recovery, (iii) 

public safety, (iv) electronic payment, (v) healthcare, 

(vi) remote maintenance and control, (vii) smart 

metering, (viii) consumer devices, and (ix) retail. Due 

to this impressive variety, existing wireless systems are 

targeting air interface enhancements to efficiently 

support MTC connectivity [3]. Primarily, 3GPP Long 

Term Evolution (LTE) cellular technology has seen 

numerous improvements over the last years across 

several study and work items defined on MTC. 
 

The corresponding 3GPP efforts have revealed that 

ubiquity of MTC deployments is challenged by typical 

characteristics of MTC. Among these are extremely 

large numbers of devices, their small-size data 

transmissions, and infrequent traffic patterns. Hence, 

the primary standardization focus is to satisfy a range 

of unique requirements that are very different from 

those in conventional human-to-human communication, 

but common to many MTC use cases. Correspondingly, 

existing MTC-related research generally targets to 

support efficient transmission of small and infrequent 

MTC data bursts with minimal overheads across 

massive unattended deployments with a very large 

number of potentially active devices.  
 

 

This paper comprehensively reviews our recent 

research efforts along these lines, with the ultimate 

goal of delivering efficient and affordable wireless 

connectivity at low power and with moderate large-

scale deployment effort. As the result, we confirm that 

3GPP LTE technology is becoming increasingly 

attractive for supporting large-scale MTC installations 

due to its wide coverage, relatively low deployment 

costs, and simplicity of management. Hence, it has 

capability to achieve “anytime, anywhere” wireless 

connectivity across a plethora of prospective MTC 

applications. 
 

With further evolution of 3GPP LTE (Rel-12 and 

beyond), which is currently regarded as the mainstream 

activity towards fifth-generation (5G) wireless 

networks, the information sharing capabilities between 

diverse interacting devices would improve dramatically. 

Given its potential to enable ubiquitous connectivity 

between various communicating objects, as well as 

collection and sharing of the massive amounts of data, 

MTC is likely to become the centerpiece of the 

emerging 5G ecosystem with its associated challenges, 

such as extreme heterogeneity, large-scale unattended 

wireless connectivity, and unprecedentedly large 

volumes of information. 
 

2. Challenges of massive large-scale MTC scenarios 

Our analysis in [4] indicates that smart grid may 

become one of the key MTC use cases that involves 

meters autonomously reporting usage and alarm 

information to grid infrastructure to help reduce 

operational cost, as well as to regulate a customer's 

utility use based on load-dependent pricing signals 

received from the grid. The motivating smart metering 

use case therefore serves as a valuable reference MTC 

scenario (see Figure 1) covering many characterizing 

MTC features. 

 
Figure 1. Envisioned long-range MTC deployment [5]. 
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We expect that cellular technologies, such as 3GPP 

LTE, will play a pivotal role in enabling future smart 

metering applications. Together with effective 

measures for overload control in smart grid, the LTE 

system shall also provide mechanisms to lower power 

consumption of small-scale battery-powered wireless 

meters. As transmitted data bursts may be extremely 

small in size, the network should additionally support 

efficient transmission of such packets with very low 

overhead. In what follows, we summarize our related 

research, which is a combined pursuit of analysis and 

detailed protocol-level simulations. 
 

Enabling device cooperation for MTC. 

Our initial work in [6] studied a typical smart metering 

MTC application scenario, which features a very large 

number of devices connecting to the network. We 

focused on enhancing the performance of cell-edge 

MTC devices with poor communication link and 

proposed a simple and feasible client relay scheme to 

improve link performance. With client relay technique, 

MTC devices with better channel conditions may relay 

data on behalf of other proximate devices and thus 

improve the resulting communication performance.  
 

The outcomes of our analysis indicate that latency and 

energy expenditure of cell-edge MTC devices may be 

dramatically lowered with our proposed 

communication scheme, even when there is a surge in 

near simultaneous network entry attempts by a large 

number of meters. Such surge in network access 

attempts may occur, for example, in a power outage 

scenario where a large number of smart meters 

attempts to connect to the network to report the outage 

event and again when they reconnect to the network 

upon restoration of power.  
 

MTC-specific overload control mechanisms. 
With this research, we continue to consider a typical 

smart metering MTC application scenario in 3GPP 

LTE wireless cellular system [7] featuring a large 

number of devices connecting to the network near-

simultaneously and then sending their data through the 

network. We target thorough analysis of the random 

access channel (RACH) within the LTE technology 

with respect to the congested MTC scenario. 
 

More specifically, the RACH procedure is decomposed 

into two stages. The first one is the uplink timing 

correction stage (known as Msg1/Msg2), where the 

power ramping technique may be used to adjust the 

transmit power of a random-access preamble to 

particular channel conditions. Further, a meaningful 

uplink message (subject to appropriate contention 

resolution) is transmitted to the base station (termed 

eNB, see Figure 1) for the purposes of initial network 

access or bandwidth requesting (known as 

Msg3/Msg4). 

 

 
Figure 2. Performance of overload control schemes [8]. 
 

Our approach in [8] (and prior work in [9]) allows 

investigating the performance of MTC devices, the 

impact of RACH settings, and the overload control 

mechanisms in terms of conventional metrics, such as 

medium access delay and access success probability 

(see Figure 2). In particular, the limitation of existing 

access protocol in case of correlated network entry 

attempts has been indicated and the benefits of several 

potential enhancements were highlighted. These 

modifications do not require major protocol change and 

feature the pre-backoff technique complemented by the 

usage of larger MTC-specific backoff indicator values. 
 

Reducing MTC device power consumption. 

Due to the fact that the MTC devices are typically 

small-scale and battery-powered, considering their 

power consumption is of paramount importance. By 

including power consumption into our framework [8], 

[9] together with the conventional performance metrics 

mentioned above, we aim at providing a complete and 

unified insight into MTC device operation (see 

Figure 2). 
 

Further, the research in [10], [11] studies the power 

consumption aspects of LTE MTC devices. We discuss 

characteristics of possible MTC traffic and devices to 

propose an appropriate power consumption model. We 

further investigate how various model parameters 

affect the battery lifetime and the power consumption 

of the devices. Our results indicate that making the 

current maximum discontinuous reception (DRX) and 

paging cycle length longer would lead to significant 

gains in the energy consumption of MTC devices. 
 

Efficient MTC-centric data access mechanisms.  
Whereas our earlier research concentrated on the 

analysis of the overloaded random access channel in 

the LTE network, we continue our investigations with 

an emphasis on small data access when the network is 

not experiencing an MTC overload. We propose and 

detail an efficient small data transmission mechanism 

which may be used as an alternative to the 
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conventional signaling thus significantly improving the 

MTC performance. In particular, the contributions of 

our work in [12] are (i) a novel integrated simulation-

analytical framework for evaluating MTC data access 

mechanisms over various uplink LTE channels (see 

Figure 3); and (ii) an efficient MTC-specific data 

access scheme, which we name contention-based LTE 

transmission (COBALT). 

 

 
Figure 3. Uplink channels in 3GPP LTE [12]. 

 

Summarizing, in [12] we have reviewed the existing 

data access mechanisms, which may be used by MTC 

devices to transmit their data over LTE. We 

emphasized that neither the default PUCCH-based 

scheme, nor the alternative PRACH-based scheme is 

optimal for supporting massive MTC deployments, 

where the traffic arrivals are infrequent and small. By 

contrast, our proposed COBALT scheme takes 

advantage of the simple implementation and thus fewer 

number of LTE signaling messages. Consequently, it 

demonstrates significantly better usage of network 

resources, lower power consumption for the MTC 

devices, and often reduced latency performance. 
 

Accommodating connected-mode MTC devices. 
In this research track, our attention shifts to 

investigating the situations when MTC devices have 

already established their LTE connection and send their 

meaningful data rather than the network entry requests. 

In [5], we investigate whether a surge in simultaneous 

transmission attempts by numerous connected-mode 

MTC devices actually threatens the radio network. Our 

main contribution is detailed characterization of an 

overloaded scenario where a large number of MTC 

devices transmit their information into the LTE 

network.  
 

In particular, we introduce the scenario incorporating a 

mixture of diverse device classes transmitting to a 

common eNB (see Figure 1), and then assess it with 

both analysis and protocol-level simulations. The MTC 

classes correspond to the priority of the transmitted 

information, e.g., high priority (alarm messages), low 

priority (measurement data), etc. We conclude that 

appropriate overload control mechanisms may also be 

necessary for connected-mode devices and especially 

for high priority MTC devices to mitigate the 

deleterious effects of the random access procedure. 

Random access for a large number of MTC devices. 

Recent publications have thoroughly characterized the 

effects of RACH overloads to understand the 

consequences of near-simultaneous initial network 

entry attempts by many MTC devices. However, past 

disjoint research efforts did not provide a uniform 

analytical view of contention-based behavior, 

especially when a large number of MTC devices 

transmit their dynamic (unsaturated) traffic. In [13] and 

[14], we bridge the indicated gap by proposing a novel 

mathematical model that essentially captures 

contention in typical MTC environment and further 

tailor it to several important MTC-over-LTE use cases. 

More specifically, the main contribution of our work is 

rigorous analytical characterization of dynamic 

contention in the multi-channel environment across a 

range of channel access algorithms and for extremely 

large numbers of MTC devices.  
 

3. Conclusion and current work 

Our world is rapidly developing into a networked 

society [15], where people, knowledge, devices, and 

information are tightly integrated across several key 

markets, including utilities, vehicular telematics, 

healthcare, and consumer electronics. This vision 

suggests that on the order of 50 billion devices be 

connected by 2020 [16], thus making the concept of the 

IoT reality and fueling the prospective 5G-ready 3GPP 

LTE installations with unprecedentedly massive 

amounts of information that will be gathered by 

various connected objects. 
 

In recent years, LTE technology has seen numerous 

MTC-specific modifications, from overload protection 

schemes and lightweight signaling procedures, to 

efficient small data transmission and coverage 

extension mechanisms, as well as advanced approaches 

to MTC-aware radio resource allocation [17]. Current 

work in the standards (e.g., in the latest Rel-12 of LTE 

and beyond) targets further decisive modifications in a 

wide range of aspects, from handling very large 

number of devices with ultra-low energy consumption 

to delivering extended cellular coverage to low-cost 

and low-complexity MTC devices [15]. 
 

An emerging research angle, particularly important for 

industry-grade 5G systems, is focusing on feasible 

improvements for MTC in current and forthcoming 

releases of 3GPP LTE technology with respect to 

longer communication range, higher transmission 

reliability, and lower network access latency. Another 

pressing demand is to explore novel opportunities 

offered by recent progress of radio access technology 

for MTC connectivity in light of envisioned Industrial 

Internet challenges and applications, including the 

industrial automation use case. The above constitutes 

the directions of our current work. 
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1. Introduction 

Telecommunication technologies in all their forms (2G 

to 4G, Wi-Fi, Wi-Max…) [1] use a unique model to 

communicate between two entities. It consists in 

forwarding the packets to an access point which sends 

the information back to the destination (Figure 12-a). 

This happens when source and destination are in the 

same cell. If source and destination are located in two 

different cells, then the information uses a hierarchical 

path based on a tree topology going up and then down 

to the final destination as shown on Figure 12-b. 

 

 
 

 
Figure 12. (a) Communication in one cell; (b) in 

different cells 

 

This model implies many disadvantages in terms of 

capacity and energy consumption:  

 
1) When many devices want to access to the 

network in the same cell (Figure 13), they have 

to send the information to the access point 

serving the cell. However, the access point can 

only process one request at the same time. If 

many requests arrive simultaneously, they 

generate collisions and interferences. A 

scheduling mechanism needs to be elaborated at 

the access point in order to organize the access 

to the network, request after request. Parallel 

request cannot be served which limits the 

capacity of the cell.  
 

 

Figure 13. Scheduling at the access point 

 

2) In terms of energy consumption, transferring 

the information to an intermediate access point 

instead of direct transfer doubles the number of 

transmissions/receptions. Also, when using a 

tree-topology path to climb up then down on a 

vertical way will increase the energy per bit 

comparing to a direct and horizontal path. 

Figure 14 illustrates the difference between 

horizontal and vertical communications. 

 

 
 

Figure 14. Horizontal versus Vertical communications. 

 
The objectives of the next generation 5G is to increase 

the network capacity by introducing a Device to 

Device technology. Using direct communications 

would increase the capacity of the networks since 

parallel communications could happen comparing to an 

access point centralized scheduling. Direct 
communications do not need to communicate with high 

power since the destination is very close to the source. 
The low power reduces the energy consumption and 

increases the capacity by reducing the interferences. 
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2. Observation on the traffic 

When scanning the traffic on telecommunication 

networks, one could observe that an important part of 

the traffic is local. People during events or in smart 

cities and smart homes, share pictures and videos, 

exchange information on their environment. The 

information in the majority of cases do not need to 

travel through the infrastructure of the network and the 

cloud and to consume a huge amount of resources and 

energy to come back to the neighborhood. Although, 

the video traffic [2] on mobile devices is doubling 

every year, damaging seriously the capacity at access 

points by creating bottlenecks. 

 

3. Embedded Internet and 5G  

The idea to go directly from source to destination is not 

new. Its implementation was never realized in the past 

because operators of networks had to control the traffic 

for accounting and monitoring. Nowadays, the majority 

of subscriptions include an unlimited usage of the 

network. Hence, the more the traffic is out of the 

operator network, the less the infrastructure of the 

operator is saturated while its income stays the same. 

Introducing horizontal and direct communications is a 

win-win policy for operators, customers and also the 

entire eco-system. Why, should local traffic travel over 

the entire network and data centers to just reach a close 

destination? 

5G networks include in their requirements the faculty 

that two devices should communicate directly with no 

need of any network infrastructure. This implies that 

the device should contain a minimum of network 

intelligence to have the capacity to detect destinations 

and to also transfer the traffic of its peers. In addition, 

Device2Device communication should continue to 

work even when the global network is not operating or 

when damages push the global network offline.  

Efforts to make intelligence in the applications of 

Smart Phones is an option to introduce the 

Device2Device. Some products are already working on 

different platforms (IOS, Android) such as AirDrop [4] 

or Firechat [5]. In those cases, the Device2Device is 

managed at the application layer and with a proprietary 

protocol. It means that Smart Phones should first install 

the application to run a Device2Device. Furthermore, 

each new service requires the development and 

download of a new application. This model cannot 

scale. 

 

4. Wearable and Embedded Internet 

Green Communications [3] introduces the concept of 

Embedded Internet where devices hold a full TCP/IP 

environment, an open operating system (Buildroot-

based Linux) and a sharing storage. Each device 

contains two wireless network interfaces. One to 

establish the network between the devices and the 

second to offer an access to SmartPhones, tablets and 

computers. All type of applications will be active 

immediately because the network is running a TCP/IP 

locally. It is also possible to provide many applications 

over http using a local web server and latest web 

technologies (htmls). This gives the opportunity to 

anyone to communicate even if they didn’t download a 

native application. 

The device is light enough to be held or wearable. It 

could be distributed on-site or could come directly 

within the visitors. When turning the devices ON, the 

network is established in few seconds and then a local 

Internet is operated. A subset of the devices could be 

configured as gateways to the global Internet to create 

a hybrid model where local traffic stay local and global 

traffic is transferred across the gateways.  

 

 
Figure 15. Monitoring interface with open data. 

 
5. Local Cloud 

The Green Communications device also includes 

storage with security options to offer the possibility to 

share information and also to install new specific 

applications related to the area where the network is 

running. The network provides access to its raw open 

data to help people in their connections and enables 

application developers to build more appropriate 

applications related to on-site usage. Figure 15 shows 

the different kind data that are open: network topology, 

number of users per access point, quality of links 

between access points, location of the Internet 

Gateways, access point profiles through the vCard 

Standard 

 

6. Distributed TCP/IP 

In order for an embedded Internet to work correctly, it 

is mandatory to distribute all the services over the 

devices. Services shouldn’t depend on one specific 

machine to avoid any network blackout. When a device 

enters or leaves the network, services must continue to 
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work correctly. The solution should also provide 

distributed TCP/IP over the devices by enhancing them 

with Zeroconf (mDNS, DNS-SD), anycast addresses, 

handoff management, distributed DHCP 

implementation, distributed database. 

 

7. Conclusions 

Communicating locally for local traffic is simply the 

common sense in the telecommunication systems. Until 

now, all networks never proposed any Device2Device 

communications. Within the 5G, this type of 

communication will be standardized allowing an 

enhancement of the network capacity and its energy 

consumption. 
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1. Introduction 
Nowadays, video service delivery faces two challenges: 

how to use big data to optimize decisions? How to 

create new services? Many service providers and 

operators are struggling to maintain the Average 

Revenue per User (ARPU) and reduce hardware 

CAPEX/OPEX despite the high competition in the 

video services market. Assessing Quality of Experience 

can allow them to understand how the end-users 

perceive the quality of video and audio. They are more 

and more using big data techniques to store data and 

assess Quality of Experience (QoE) aiming at 

providing new dynamic adaptation methods.  

Two types of adaptation can be considered to optimize 

QoE: content based adaptation and network/resources 

based adaptation. On the one hand, content based 

adaptation allows adapting the video choosing the right 

video codec, bitrate and layers that will be sent to the 

player. On the other hand, network and resources based 

adaptation relates to which mode will be used to 

deliver content to the end-users (e.g. unicast/multicast), 

through which network, and what is the required 

hardware.  

Furthermore, underlying architectures and hardware 

resources can affect QoE. Since the early stages of the 

Internet, CDN (Content Delivery Network) service 

providers have been deploying geographically 

distributed servers to extend their footprint, locating 

them closer to end-users in order to reduce the delay 

and improve QoE. Nowadays, OTT (Over The Top) 

actors (like Amazon, Microsoft) and Telcos provide 

Cloud “X-as–a-Service” (XaaS) offers where X may 

for instance, stand for Infrastructure, Platform or 

Software. At a technical level, these offers are mainly 

supported by centralized infrastructures using 

automated processes and virtualization as an enabler. 

Infrastructure virtualization facilitates server operations 

allowing fast instantiation of servers (scale in/out) and 

upgrade/downgrade (scale up/down).  

 

As said in [1], to take an adequate adaptation decision, 

we should consider QoE coupled with context data on 

the user, devices, network, and the content itself to take 

the adequate adaptation decision. In this work, we first 

propose to collect information in big data approach, 

next, we use these data for better assessing Quality of 

Experience regarding collected information on user, 

devices, network, hardware and contents. Finally a 

Cloud based architecture for Video Delivery 

Adaptation is suggested to optimize networks resources 

and hardware and improve QoE.  

 
2. Big data information       
For an accurate estimate of QoE, we consider context 

data. The notion of context allows taking into account 

information coming from a user and his environment. 

Data need to be dynamically gathered in real-time 

during service delivery. Collected data may include: i): 

device context (capacity, screen size …), ii) network 

context (jitter, packet loss, available bandwidth …), iii) 

user context (who is the user, his preferences, his 

consumption style, gender, age…), iv) service context 

(type of contents, available video bitrates) and v) and 

hardware context (available memory, CPU, storage 

capacity …). 

Figure 1 shows the considered context data in our study. 

 
                 Figure 16. Considered context data 

 

3. Quality of Experience assessment and video 

optimization 
In this section, we first introduce classical objective 

and subjective methodologies in the literature. 

Secondly, we describe our proposal for QoE 

assessment and thirdly, we describe the video service 

optimization problem. 

 

3.1 Related work 

The following works either use objective or subjective 

approaches to measure Quality of Experience (QoE).  

  

First of all, objective approaches don’t require end-

user’s feedback to predict the quality of the perceived 

content. An example of comparative method is the 

PSNR (Peak Signal-to-Noise Ratio) which is based on 

the power balance between the native information and 
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the background noise generated by distortion after 

compression or recompression. It is defined via the 

Mean Squared Error (MSE) between an original frame 

o and the distorted frame d as presented in [2]. On the 

contrary, some direct approaches do not require 

reference information on the original content. For 

instance, the method showed in [3] is based on a metric 

that quantifies blurring phenomena along edges and 

contours in video images due to video degradation. 

Please note that the required parameters and inputs are 

all available on client side.  

Subjective methodologies are the most fundamental 

approaches for evaluating QoE. They are based on 

surveys, interviews of customers and statistical 

sampling of their answers to analyze their perception 

and needs with respect to the service and network 

quality. Several subjective assessment methods suitable 

for video application have been recommended, the 

P.910 [4] and ITU-R Recommendation BT 500-11[5].  

Furthermore, these techniques have some drawbacks. 

The objectives ones do not consider the user’s opinion 

about streamed content and also context data are not 

considered. For the subjective ones, it might not be 

realistic to ask all viewers their scores as it can be very 

annoying for them.  

 In this work, we thus propose to use context data in 

order to assess Quality of Experience. 

 

3.2 Proposed Quality of Experience assessment 

model and Optimization problem 

The proposed QoE assessment model takes into 

account the data showed in the precedent section. We 

divided the model in three parts: the network effects, 

the video quality effects and the hardware impacts.   

First, we analyze the impact of network degradation 

which is function of network with respect to different 

content types and devices types as our work in [6]. 

By using subjective data coming from past experiments, 

we build a parametric model. It takes into account 

context parameters such as the device type, the video 

content type, video bitrate and the quality of the 

network link. The analytical is showed by the equation 

below:  
𝑁𝑠𝑖,𝑗 =  𝛼+𝛽∗𝑒−𝛿∗𝐷𝑣(𝑗)𝐷𝑟(𝑖)  (1) 

 

o 𝑁 ( , )corresponds to the satisfaction obtained by 

the end-users in network i for flow j. 

o 𝛼, 𝛽 and 𝛿, are the model parameters calculated by 

using subjective test data from different 

experiments. 

o 𝐷 , is the available throughput and 𝐷 , the bitrate 

video. 

Secondly, we analyze the effect of video quality which 

is function of encoding variation with respect to 

different content types and device categories As in the 

network impact study, by using past experiments data, 

the developed model is:  
𝑉𝑄𝑠𝑗=µ1∗ log𝐷𝑣𝑗+µ2      (2) 

 

o 𝑉𝑄 ( ) is the satisfaction obtained in video quality. 

o 𝐷𝑣𝑗) is the video bitrate for flow j. 

o    𝑎 𝑑 µ2  are the model parameters  

 

And finally, the score from hardware can be computed 

using the formula below:  
𝐻𝑠𝑘 = 𝑘=1 𝛼𝑘∗𝐻𝑘   (3)  

o 𝐻 ( )  corresponds to the hardware score for server 

k 

o 𝐻𝑘 is the hardware parameter (CPU, storage 

capacity, memory, inbound and outbound 

bandwidth) for server k 
o 𝛼  is the weight of each hardware parameter.  

The proposed general QoE assessment model is:  
       QoE(𝑖,𝑗,𝑘)=𝛿1∗𝑁𝑠𝑖,𝑗+𝛿2∗ 𝑉𝑄 ( )+ 𝛿3∗ 𝐻𝑠𝑘 (4) 

 

where: 𝛿1, 𝛿2 𝑎 𝑑 𝛿3, are the weights of entities in the 

global Quality of Experience and 𝛿1+𝛿2+𝛿3=1.  
 
After computing scores on network, hardware and video 

quality, we describe the optimization problem with the 

constraints:  
Objective: maximize (QoE(𝑖,𝑗,𝑘)) 

       Subject to:    𝐷 <  𝐷     

                           VQ ϵ [𝑉𝑄1  𝑉𝑄 …  𝑉𝑄 𝑎𝑥] 

                           CPU < 𝐶𝑃     

                           mem<  𝑒     

                           storage< 𝑠𝑡𝑜𝑟𝑎 𝑒 𝑎𝑥 

    where:  
o 𝐷 , is the bandwidth that should be allocated and 

𝐷     is the maximum bandwidth the network can 
allocate.  

o VQ is the video quality. For each content, the 
chosen quality belongs to the finite set  [𝑉𝑄1  
𝑉𝑄 …  𝑉𝑄 𝑎𝑥] 

o 𝐶𝑃  𝑎𝑥 , 𝑒  𝑎𝑥 ,𝑠𝑡𝑜𝑟𝑎 𝑒 𝑎𝑥are respectively 
the maximum of CPU, memory and storage that 
can be allocated. 
 

                  
4. Video Delivery Adaptation 

We can then formalize the possible choices leading to 

the optimal decision, with the following triplet (Ni, 

VQj, Hk). The decision is based on the previous 

parameters. It includes the following possibilities:  

1) Deliver content from another network (Ni). e.g., 

network1 offers better conditions for delivering the 

considered content. 

2) Change video quality: VQj, the encoding quality 

among available content encoding qualities. 

3) Deliver content from another server (Hk), including:  



IEEE COMSOC MMTC E-Letter 

http://www.comsoc.org/~mmc 50/59       Vol.9, No.6, November 2014 
 

o Deliver content using another server, or, 
o Upgrade (e.g., scaling-up) the current virtual 

server characteristics. For instance this would 

mean increasing the amount of allocated 

memory or number CPUs, or bandwidth, if 

support hardware is available. 

Hk is the server number k, for delivery, where its 

characteristics vary following an n-uplet (CPU, 

storage capacity, memory, inbound and outbound 

bandwidth).  

The optimal decision may be computed for each 

session request. The terminal/player would be either 

redirected to another server, network or would be 

requesting another video encoding rate. The decision 

enables to have optimal QoE in given conditions.  

The following figure describes the proposed solution 

architecture, where      ,       and      are optimal 

parameters.  

 
     Figure 2. Proposed solution architecture 

 
5. Conclusion  

With the explosion of multimedia and audiovisual 

services and also the competition between service 

providers, Quality of Experience has become critical 

for them to continue gaining users’ satisfaction.  

In this work, we proposed to use context data to assess 

Quality of Experience. The proposed model is function 

of device, network, service contexts and hardware 

parameters. Secondly, we proposed an optimization 

decision, which enables having optimal Quality of 

Experience in given conditions. It takes into account 

the network status, hardware parameters and video 

encoding. The optimization decision can be ensured 

following three options: redirecting the terminal to 

another server/network, requesting another video 

encoding rate, or upgrading the characteristics of the 

server (storage capacity, memory …).  
The optimization of the virtual server’s characteristics 

may also reduce the needed CAPEX/OPEX allocated 

to a given server while respecting the desired QoE, 

which is essential in the operational context. 
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1. Introduction 

Big data analytics is becoming more and more 

important. These analytics provide substantial 

information that can be used for finding out problems, 

identify important patterns or behavior, or provide 

statistical information regarding certain product or 

service. There are currently several framework 

dedicated for processing big data and providing the 

required analytics at high efficiency such as Apache 

Hadoop framework[1,2]. 

 

With the growing popularity of using video contents in 

many of these applications and the availability of high 

speed networks. Video data is becoming the major 

portion of internet traffic. In addition, the emergence of 

new technologies that enable capturing, encoding, and 

transmitting or storing video at higher quality and 

higher resolution, many video related applications, 

such as video surveillance, video broadcasting, require 

the processing of huge video data on a continuous 

bases. As a result, the need for intelligent video 

analytics platform for big data is become more and 

more urgent. 

Video analytics can be very important and effective for 

many clients who depends on video contents as their 

primary data. It can be used to spot unexpected 

problems or serious or alarming situations. By 

identifying problems, solutions can be proposed, 

problems can be avoided, and revenues can increase. 

 

The following sections presents typical use cases for 

video analytics solutions, the main building blocks of 

any video analytics solutions, and the main challenges 

presents in today’s video analytics systems. 

 

2. Video Analytics Applications 
There are many applications that can be improved with 

the use of video analytics.  Examples of those 

applications include  

 Surveillance (traffic, crowded areas, private areas): 

many useful applications such as intruder detection 

and tracking, detection of unattended luggage in 

airports, suspicious activities, theft, loiters, 

Finding out lost items, missing persons. In traffic, 

identify traffic patterns and analysis of traffic flow 

which could help divert car and trucks from heavy 

traffic roads to roads with lighter traffic. It can 

help identify traffic violators such as speeding car, 

car driving in the wrong or unallowable direction, 

hit and run accidents. Location of stolen cars, etc. 

In parking lots as shown in Figure 1, video 

analytics can be used to analyze client pattern, car 

counting 

 Broadcasting (sports, streaming): in sports video 

analytics can be used to analyze player activities 

and performance, detecting improper behavior. In 

streaming, Analytics can provide details about 

popular streamed contents or visited web site per 

age or gender group. 

 Marketing: Analysis of customer’s behavior in 

large malls or stores can help identify customer 

preference (store, product) and speed up purchase 

and service process. Identify frequently needed 

products 

 Others: Medical, education, etc.: similar use cases 

can be derived for different applications. 

 

 
 

Figure 1.Video Analytics Example: Counting Cars in a 

Parking Lot (PETS DataSet[3,4]) 

 

3. Video Analytics System Components  

A typical video analytic system has both hardware and 

software requirements. The hardware system consists 

of a group of camera connected to a central server(s). 

The cameras are used to capture video from certain 

position and the captured video can then be encoded 

and streamed to the analytics server. In some cases, 

camera can perform other tasks such as motion 

detection, line or area crossing, etc. The analytics 

server is used to operate or control the cameras, 

process or store incoming video feeds and perform 

other required tasks such as intruder detection, 

recognition, and alarming if necessary. Big data 

processing is accomplished by using numbers of 

servers in addition to the central server in order to 

improve the processing performance. The central 
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server will be responsible for data and processing 

distribution. Cameras are connected to the server(s) 

with high speed network as shown in Figure 2. The 

choice of the camera capabilities, their placement and 

orientation as well as the server(s) capabilities is 

usually related to target applications.  

Central 
server

Auxiliary servers

Area under 
surveillance

 
Figure 2 Video Analytics Setup. 

 

Figure 3 shows the main software components of a 

typical video analytics software. In more complex 

systems some of those components can further be split. 

  

 

 
Figure 3 Components of Video Analytics Platform. 

 

The use of each component can be described as follows 

 

A. Video Data Collection: Data can be online or 

offline from stored files or cameras. Video data 

can be stored in local or remote files. Number of 

cameras or video feeds vary from small or limited, 

as in case of small office surveillance, to extremely 

large or huge, as the case of city traffic 

management system.   

B. Video data preparation: Video data needed to be 

prepared so it can be processed in parallel or in 

multiple device. The scalability of big data and 

algorithms at this stage is very critical. The use of 

big data platform should facilitate this process and 

provide the necessary scalability to achieve target 

performance.  

C. Video data processing: This is where the actual 

processing of split data chunks occurs. The choice 

of a process to be executed on data depends on the 

required feature(s), The main process in the central 

server should balance and manage process data 

among existing server(s). Each process handles 

data as a standalone set and produces partial 

results. In many scenarios, the processing of data 

is used to extract the important or required features 

from this video data. 

D. Result Aggregation: When all chunks are 

processed, collecting results together to produce 

the combined or final results is applied. The 

aggregation represents the validation, 

summarization, and other processing on the 

extracted features from data processing step. 

E. Result Visualization: This is the final step where 

the produced results is represented in a simplified 

form such as presentation, chart, or summary 

report. 

Hadoop platform, for example, uses MAPReduce[5] 

approach to process big data in multiple servers. In this 

case, data is split into chunks of defined size. In the 

MAP process, chunks are distributed to multiple 

servers, and processed as intended. In the reduce 

process, the results from separate MAP processes are 

collected, validated, and combined to produce the 

intended outcome. 

Some of the simple examples of MAP/Reduce 

approach are face or object counting or histogram 

calculation for Gigabyte images. In this case, the image 

is split into blocks, each block is processed in a 

separate MAP process which computes number of 

faces, objects, or colors in each block separately. Once 

the MAP processes are completed, the partial results 

are aggregated in the Reduce process to provide the 

total results which can later be presented by a graph.  

 

4. Video Analytics Challenges 

There are several common problems associated with 

the generic big data, such as log files, and Video big 

data. For example, all big data needed to be stored, 

transferred, and processed at reasonable time. However, 

video big data includes additional challenges that 

needed to be tackled independently. This section 

provides highlights on some of these challenges. 
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A. Management Video Data Size: Video data size 

can grow rapidly to Gigabytes, Terabytes, or 

Petabytes range based on many parameters such as 

number of video feeds, resolution and durations of 

those videos. In other big data types, few 

Gigabytes can represent a collection of data over a 

month duration while for video big data, the same 

amount of Gigabytes could just represents few 

hours of videos even if video encoding technique 

is being used[6]. 

This challenge puts huge pressure on storage and 

transmission resources and dictates whether the 

video analytics processes should work remotely or 

locally. 

In addition to video compression, there are several 

approaches that can be used to reduce the need to 

process or transfer large amount of videos such as 

preprocessing video on capturing devices, or 

identifying important video frames only. For 

example, motion sensors can detect motion after 

which key video frames should be captured. 

 

B. Management of Compressed Video: 

Compressing video content is a must when dealing 

with big video data. However, compression 

algorithms rely heavily on removing video 

redundancies which results in having the encoded 

frames dependents on other frames, usually prior 

frames in time. 

Splitting video big data into chunks should remove 

the inter-chunk dependencies so each chunk can be 

processed as a single video stream. This process 

could require large amount of computation and 

parsing through the video streams for proper split 

position.  

Another inherited problem in compressed video is 

the degradation of video quality due to the use of 

lossy compression algorithms such as H.264 or 

HEVC[6]. One of the possible solution to this 

problem is the select the proper recording quality 

based on the activity under observation. When 

such activity occur, the video should be recorded 

at highest possible quality. 

 

C. Accuracy of Computer Vision Algorithms: Most 

video analytics solutions require the use of 

computer vision algorithms for detection, 

recognition, and tracking of different types of 

objects such as faces, cars, pedestrian, or any other 

objects of interest [7,8]. The efficiency of 

computer vision algorithms can be dramatically 

affected by many factors such as  

 Crowded areas or locations of objects moving in 

complex motion patterns. It is very likely that 

the object under investigation can be blocked 

with other objects in the scene. 

 Face orientation change or simple changes in 

facial features such as taking off or putting on 

glasses, hats, or head cover. Those simple items 

can fails most of current recognition algorithm 

 Environmental conditions such as rainy, foggy, 

cloudy weather which can affect video capture 

quality. Other daily lighting changes or presence 

of shades can also result in false detection. 

 Equipment conditions such as camera zooming 

or angle of placement. 

 Performance requirements. Both Computer 

vision and video coding algorithms are very 

computationally intensive and require high 

performance computing.  

The above described problems often results in 

approximated results which can be useful in many 

applications. However, in applications which require 

higher accuracy, other solutions are needed. For 

example, use of semi-automatic analytics where human 

involvement is used to improve the accuracy, use of 

additional sensors such as RFID, or increase number of 

cameras or their capabilities and provide strong 

coordination between them. On top of that, advanced 

research that yields computer vision algorithms with 

higher accuracy is still needed.  

 

5. Conclusions 

This paper provided an overview of big data video 

analytics. The paper discussed the basic building 

components of a typical video analytics platform and 

highlighted the most common challenges and 

limitations associated with existing solutions. 
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 Security and privacy in multimedia big data 

 Interaction, access, visualization of multimedia big data 

 Multimedia big data systems 

 Novel and incentive applications of multimedia big data in various fields (e.g., search, healthcare, transportation, and 

retail) 

 

Important dates 

Submission deadline: February 28, 2015  

First notification: April 28, 2015     Revision due: May 31, 2015  

Final notification of acceptance: July 5, 2015  Camera-ready manuscript due: July 21, 2015    

Tentative publication date: August 2015 

 

Submission procedure  

Papers should be formatted according to the IEEE Transactions on Multimedia guidelines for authors (see:  

http://www.signalprocessingsociety.org/tmm/tmm-author-info/). By submitting/resubmitting your manuscript to this 

transactions, you are acknowledging that you accept the rules established for publication of manuscripts, including 

agreement to pay all over-length page charges, color charges, and any other charges and fees associated with publication 

of the manuscript. Manuscripts (both 1-column and 2-column versions are required) should be submitted electronically 

through the online IEEE manuscript submission system at http://mc.manuscriptcentral.com/tmm-ieee. When selecting a 

manuscript type, the authors must click on BigMM Special Issue. All the submitted papers will go through the same 

review process as that for the regular TMM paper submissions. Referees will consider originality, significance, technical  

soundness, clarity of exposition, and relevance to the special issue topics above. 

 

Guest Editors 

Shu-Ching Chen, Florida International University, USA (chens@cs.fiu.edu) 

Ramesh Jain, University of California, Irvine, USA (jain@ics.uci.edu) 

Yonghong Tian, Peking University, China (yhtian@pku.edu.cn) 

Haohong Wang, TCL Research America, USA (haohongwang@gmail.com) 
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Call for Papers 

IEEE Transactions on Cloud Computing 

Special Issue on “Mobile Clouds” 

 

Mobile cloud computing represents one of the latest developments in cloud computing advancement. In particular, mobile 

cloud computing extends cloud computing services to the mobile domain by enabling mobile applications to access 

extern al computing and storage resources available in the cloud. Not only mobile applications are no longer limited by 

the computing and data storage limitations within mobile devices, nevertheless adequate offloading of computation 

intensive processes also has the potential to prolong the battery life.  

Besides, there is also an incentive for mobile devices to host foreign processes. This represents a  new type of mobile 

cloud computing services. Ad-hoc mobile cloud is one instance that mobile users sharing common interest in a particular 

task such as image processing of a local happening can seek collaborative effort to share processing and outcomes. 

Vehicular cloud computing is another instance of mobile cloud computing that exploits local sensing data and processing 

of vehicles to enhance Intelligent Transportation Systems. 

This Special Issue will collect papers on new technologies to achieve realization of mobile cloud  computing as well as 

new ideas in mobile cloud computing applications and services. The contributions to this Special Issue may present novel 

ideas, models, methodologies, system design, experiments and benchmarks for performance evaluation. This special issue 

also welcomes relevant research surveys. Topics of interest include, but are not limited to: 

- Trends in Mobile cloud applications and services 

- Architectures for mobile cloud applications and services 

- Mobile cloud computing for rich media applications 

- Service discovery and interest matching in mobile cloud 

- Collaboration in mobile clouds 

- Process offloading for mobile cloud computing 

- Mobile device virtualization 

- Mobile networks for cloud computing Mobile cloud 

monitoring and management 

- Security and privacy in mobile clouds 

- Performance evaluation of mobile cloud computing and 

networks 

- Scalability of mobile cloud networks 

- Software defined systems for mobile clouds 

- Self-organising mobile clouds 

- Mobile vehicular clouds 

- Disaster recovery in mobile clouds 

- Economic, social and environmental impact of mobile 

clouds 

- Mobile cloud software architecture 

Important Dates 

Paper submission: February 1, 2015 

First Round Decisions: May 15, 2015 

Major Revisions Due: June 15, 2015 

Final Decisions: August 15, 2015 

Publication: 2016 

Submission & Major Guidelines 

This special issue invites original research papers that present novel ideas and encourages  submission of “extended 

versions” of 2-3 Best Papers from the IEEE Mobile Cloud 2015 conference. Every submitted paper will receive at least 

three reviews and will be selected based on the originality, technical contribution, and scope. Submitted articles must not 

have been previously published or currently submitted for publication elsewhere. Papers should be submitted directly to 

the IEEE TCC at https://mc.manuscriptcentral.com/tcc, and must follow TCC formatting guidelines.  For additional 

information, please contact Chuan Heng Foh (c.foh@surrey.ac.uk). 

Editor-in-Chief 

Rajkumar Buyya, the University of Melbourne, Australia 

Guest Editors 

- Chuan Heng Foh, University of Surrey, UK 

- Satish Narayana Srirama, University of Tartu, Estonia 

- Elhadj Benkhelifa, Staffordshire University, UK 

 

 

 

 

- Burak Kantarci, Clarkson University, USA 

- Periklis Chatzimisios, Alexander TEI of Thessaloniki, Greece 

- Jinsong Wu, Alcatel Lucent, China 
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Call for Papers 

IEEE Workshop on LTE in Unlicensed Bands: Potentials and Challenges 

http://www.lte-u.com 

Organized in conjunction with 

IEEE International Conference on Communications (IEEE ICC 2015) 

8-12 June 2015, London, UK 

The exponential growth of mobile data traffic and the scarcity and costliness of licensed spectrum are driving mobile 

network operators (MNOs) to consider offloading at least part of their traffic onto the unlicensed spectrum. Most 

recently, the 3GPP is considering extending the use of LTE into the unlicensed spectrum as a seamless approach to 

enable traffic offload. This new approach is dubbed LTE Unlicensed (LTE-U). Compared to Wi-Fi, LTE-U offers 

MNOs a way to offload traffic onto the unlicensed spectrum with a technology that seamlessly integrates into their 

existing LTE evolved packet core (EPC) architecture. Furthermore, LTE-U promises higher throughout and spectral 

efficiency than Wi-Fi, with estimates ranging from 2x to 5x improvement over Wi-Fi. Currently two operating modes 

are under discussion: 1) unlicensed spectrum is aggregated with existing licensed channels and 2) unlicensed spectrum 

acts as the only carrier for LTE-U where both data and control channels reside. The liberal non-exclusive use of 

unlicensed spectrum has spurred innovation on the one hand, but has also created the need for coexistence measures 

when various uncoordinated wireless networks operate on the same frequency. In this case, LTE-U introduces new 

coexistence challenges for other technologies operating in the same unlicensed bands particularly for legacy Wi-Fi. Wi-

Fi is designed to coexist with other technologies through channel sensing and random backoff, while LTE is designed 

with the assumption that one operator has exclusive control of a given spectrum. Furthermore, LTE traffic channels are 

designed to continuously transmit with minimum time gap even in the absence of data traffic. Consequently, Wi-Fi 

users will have little chance to sense a clear channel and deem it suitable for transmission. The goal of this full-day 

workshop is to bring together academics, researchers, and practitioners to discuss the opportunities, challenges and 

potential solutions for operation of LTE in the unlicensed bands. The topics of interest include, but are not limited to: 

 

- Coexistence of schedule-based and contention-based networks in unlicensed bands 

- Fairness considerations for coexistence of LTE and Wi-Fi 

- Performance impact of LTE on networks operating in the unlicensed band 

- Radio resource management, dynamic channel selection and band steering for LTE/WiFi coexistence 

- Traffic demand-aware coexistence 

- Distributed and centralized techniques for coexistence of heterogeneous networks 

- Technical challenges and solutions of operating LTE solely on the unlicensed bands 

- QoS model for standalone LTE-U access model 

 

Paper submission link: https://edas.info/newPaper.php?c=18693&track=66309 

 

Information for Authors: Prospective authors are invited to submit original technical papers by the deadline January 20, 

2015. All submissions should be written in English with a maximum paper length of Six (6) printed pages (10-point 

font) including figures without incurring additional page charges (maximum 1 additional page with over length page 

charge if accepted). Please also see the Section in the main ICC 2015 website for Authors Guidelines. 

 

Registration: Please see the Section in the main ICC 2015 website on Registration. 

 

Workshop Organizers 

Dr. Andrea Goldsmith, Stanford University, USA (andrea@wsl.stanford.edu) 

Dr. Alireza Babaei, CableLabs, USA (a.babaei@cablelabs.com) 

Dr. Jennifer Andreoli-Fang, CableLabs, USA (j.fang@cablelabs.com) 

Dr. Klaus Doppler, Nokia Research Center, USA (klaus.doppler@nokia.com) 

 

TPC Chairs 

Dr. Shiwen Mao, Auburn University, USA (smao@ieee.org) 

Dr. Karthik Sundaresan, NEC Laboratories America, (karthiks@nec-labs.com) 

Dr. Sayantan Choudhury, Nokia Research Center, USA (sayantan.choudhury@nokia.com) 
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Call for Papers 

IEEE Workshop on Quality of Experience-based Management for Future Internet Applications & Services     

Sponsored by the IEEE ComSoc Technical Committee on Multimedia Communications 

http://qoe-fi.diee.unica.it 

Organized in conjunction with 

IEEE International Conference on Communications (IEEE ICC 2015) 
8-12 June 2015, London, UK 

Recent technological advances have enabled a constant proliferation of novel immersive and interactive services that 

pose ever-increasing demands to our communication networks and add to their load. Examples are: social TV, immersive 

environments, mobile gaming, HDTV over mobile, 3D virtual world, book/newspaper consumption, social networking, 

IPTV applications, just to cite a few. Some of these services have already reached a major market success especia lly 

because a user-centered approach has been followed to design the whole process of content production, service activation, 

content consumption, and service (and network) management.  

In addition, we witness the trend of migrating end-to-end multimedia communication systems/platforms to the cloud. 

Media processing and consumption in the cloud requires attention from two main perspectives: maintenance of 

processing-related cloud operations over the execution time considering the end-user and application-related QoS/QoE 

requirements via dynamic resource provisioning; and the parallelization and abstraction of media processing tasks for the 

optimization of limited and shared cloud resources. Furthermore, the domain of Smart Cities offers new opportunities and  

use cases, but at the same time poses new challenges for keeping users engaged and interested in those services. This also 

includes other aspects such as quality of life as well as critical considerations such as user safety, particularly when it 

comes to urban transport and emergency scenarios. 

In this dynamically evolving context, network operators and service providers are struggling to keep their increasingly 

sophisticated customers content while remaining profitable at the same time. Consequently, opt imization and 

management of QoE has become crucial issue in the deployment of successful services and products. However, even if 

the concept itself may seem straightforward to understand, it requires rather complex implementation processes for 

efficient performances in real end-to-end systems/networks. The complexity of QoE is mainly due to the difficulties in its 

modeling, evaluation, and mapping to objective Quality of Service (QoS) parameters, which,  for more than a decade, has 

been used as a partial substitution to QoE, and due to its multi-dimensional end-to-end nature covering a wide range of 

networks, applications, systems, devices, contexts and expertise. 

On this background, the QoE-FI Workshop is aimed at bringing together researchers from academia and industry to 

identify and discuss technical challenges, exchange novel ideas, explore enabling technologies, and report latest research 

efforts that cover a variety of topics including, but not limited to: 

 QoE evaluation methodologies and metrics  

 Frameworks and testbeds for QoE evaluation (crowd-sourcing, 

field testing, etc.)  

 QoE studies & trials in the context of Smart Cities  

 QoE models, their applications and use cases  

 QoE for immersive audio-video and interactive multimedia 

communication environments  

 QoE-aware cross-layer design  

 QoE-driven media processing and transmission over the cloud 

and over the top (OTT)  

 QoE control, monitoring and management strategies  

 QoE in community-focused interactive systems  

 KPI and KQI definition for QoE optimization in different 

environments  

 Integration of QoE in infrastructure and service quality 

monitoring solutions  

 Media analytics from QoE Big Data  

 Standards for media coding (HEVC, HEVC for 3D, etc.) and 

transport (DASH, MMT, XMPP, etc.)  

 Future Media Internet architectures 

 
General Chairs: 

Ahmet Kondoz, Loughborough Univ. London, UK 

Luigi Atzori, University of Cagliari, Italy 

Raimund Schatz, FTW, Austria 

 

Technical Program Chairs: 

Markus Fiedler, BTH, Sweden  

Pedro Assuncao, Institute of Telecommunications/IPL, Portugal 

Tasos Dagiuklas, Hellenic Open University, Greece 

 

Panel  Chairs: 

Weisi Lin, Nanyang Technological University, Singapore 

Periklis Chatzimisios, Alexander TEI of Thessaloniki, Greece 

 

 

Publicity Chairs: 

Adlen Ksentini, University of Rennes, France 

Nabil J. Sarhan, Wayne State University, USA 

Evangelos Pallis, TEI of Crete, Greece

 

Important Dates 

Submission deadline: January 20, 2015    Author notification: February 14, 2015     Camera ready due: February 28, 2015
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