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SPECIAL ISSUE ON New Frontiers in Edge Computing Research 
Guest Editor: Luca Foschini 

University of Bologna, Italy 
luca.foschini@unibo.it 

 

This special issue of Frontiers sheds light on new perspectives and latest achievements in edge computing research. 

In fact, fueled by recent advances in wireless communication technologies, resource virtualization technologies, and 

cloud management, we are witnessing a variety of new application scenarios where edge computing is successfully 

employed, ranging from Internet of Things (IoT) and sensing, to mobile entertainment, from smart health to Industry 

4.0. 

 

The first paper of the issue focuses on energy-neutral management of IoT devices at the edge. Chessa et al. propose a 

management solution able to carefully schedule all tasks to be executed at the IoT node; the authors developed and 

deployed the proposed solution in a real experimental testbed that includes needed hardware (i.e., energy-harvesting 

device) and software modules (i.e., energy-neutral scheduler with weather forecast awareness). A large set of 

experimental results demonstrate the feasibility of the proposed prototype. 

 

In the second paper, Laso et al. present a support environment to emulate the execution of Android-based apps and 

the automatic generation of skeleton proxies to facilitate the offload of parts of the computation to edge nodes. That 

is particularly beneficial in current edge computing scenarios that are highly heterogeneous, including devices 

sometimes with stringent resource constraints, various operating systems and execution platforms, and different 

Application Programming Interfaces (APIs). Reported experimental results confirm the feasibility of the proposed 

emulator and its usability in real deployment scenarios. 

 

The third paper, by Vitello et al., focuses on the effective deployment of Multi-access Edge Computing (MEC) Edge 

Data Centers (EDCs) in urban environments. The authors propose a methodology based on the use of mobility of 

citizens and their spatial patterns; in particular, the proposed solution proposes to combine and use in an innovative 

way social network tools and datasets, such as the mobility traces from Google Popular Times, by integrating them 

with specific simulation environments, such as the CrowdSenSim simulator proposed by the same authors. The authors 

also report a large set of results to show the advantages obtainable using the proposed solution. 

 

Finally, I want to thank all the people involved in the effort of producing this issue, and especially the submitting 

authors. My gratitude and recognition go to all these contributors, it was a pleasant experience for me, and I hope you 

will find this special issue informative and useful. 
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1. Introduction 

The pervasive use of Internet of Things (IoT) technologies, which is changing many aspects of human activities, is 

traditionally associated to the use of low-power, low cost devices typically embedding simple sensors. However, an 

important fraction of IoT applications also include more powerful devices (although not as powerful as desktop 

devices), embedding more powerful sensors like cameras, microphones etc. Examples are surveillance cameras used 

to monitor infrastructures in smart cities or industries etc. If, on one hand, those devices should support complex 

applications and require adequate computational power and memory, and a corresponding energy budget, on the other 

hand, their deployment outdoor (as it is the case of network of surveillance cameras in a smart city) brings the same 

issues encountered in the outdoor deployment of any IoT solution concerning the management of the energy of such 

devices and the reduction of the costs concerning their deployment and maintenance. It is common, for this reason, to 

adopt solutions based on energy harvesting (usually by means of photovoltaic panels) to provide adequate power to 

such devices. However, this proved by itself insufficient, if not combined with strategies for the management of the 

power that guarantee properties of energy neutrality to the devices.  

Namely, an energy-harvesting device is energy neutral if it modulates its load (i.e. its power consumption) in order to 

match the production of energy over a given time frame. For example, this can be achieved with a photovoltaic energy 

harvesting device by guaranteeing that, over each single day, the overall energy consumption is not above the overall 

energy production. In an IoT device operating with multimedia sensors, this can be achieved by defining different 

alternative tasks (for example, tasks sampling at high or at low rate, with high or low resolution, etc.), and by 

scheduling the tasks according to the energy budget and to the expected energy production over the day. Clearly, 

scheduling a task that samples a camera at high rate with high resolution would be more energy expensive, but it 

would also provide a better quality of service. The aim of the scheduling is thus to find an optimal tradeoff between 

energy consumption and quality of service while guaranteeing the energy neutrality of the device. 

This work summarizes the works in this field and discusses how the availability of fresh information about weather 

forecast through the Internet can be exploited to implement the energy-neutral scheduling strategies. In particular, we 

built an experimental testbed composed of two independent devices. One device acts as an IoT node that can be 

programmed with different tasks to experiment with different behaviors (and thus different energy consumptions of 

the device), and one device acts as monitor of all the parameters concerning the energy production of the photovoltaic 

panel and of the battery charge, without interfering with the normal operations of the first device. With this testbed 

we have initiated the collection of a dataset comprising the above described parameters concerning energy 

consumption and production, and local weather information that, combined with weather forecasts from web 

broadcasters can be used to experiment different energy-neutral scheduling strategies. 

2. Energy-Neutral Schedulers 

Energy neutrality is the ability for keeping indefinitely the device operation by means of some energy harvester and 

some optimization strategy that aligns the workload allocation with the energy availability. In a given period of time 

the consumed energy in the period is always lower or equal than the energy produced in the same period. The first 

approach is original from Kansal and Srivastava who proposed EEHF (Environmental Energy Harvesting Framework) 

[1], later refined in [2]. 

Following the way paved by Kansal and Srivastava, we have introduced a slightly different model, in which the IoT 

device has available several alternative tasks, each characterized by a different Quality of Service (QoS), duty cycle 

and energy consumption. Hence the problem of energy neutrality becomes a problem of scheduling of the tasks over 

a sequence of time slots over a given period (typically of 24 hours for photovoltaic energy harvesting devices), so to 

maximize the QoS while keeping the device energy neutral. For example, considering a IoT device that implements a 

mailto:stefano.chessa@unipi.it
mailto:antonio.caruso@unisalento.it
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surveillance camera, a task could be the sampling at high rate/high resolution of the camera and the real-time  

 

transmission of the entire video stream to the cloud (this could be a high-quality, high-cost task), while another 

alternative task could be one that samples a high rate but with average resolution, that performs locally some 

preprocessing to extract relevant features, and that transmits only the features.  

On the base of this model, we have considered progressively richer scenarios, from a simple one with one energy 

harvesting device [5], [6], to scenarios involving more devices connected to a gateway or sink, that also has energy 

harvesting capability [7], [9]. Figure 1 shows a simulation of how the IoT devices and the sink achieve the energy 

neutrality condition. These initial works adopted a greedy algorithm for the scheduling, so to minimize the execution 

time and to be feasible even on low-end IoT devices. In a recent work we considered again the simpler scenario, but 

we introduced a scheduling algorithm based on dynamic programming that finds the optimum scheduling, and we 

proved that such an approach is even feasible in low-end devices by considering the limited resolution of these devices 

in sampling the battery charge and the power production of the photovoltaic panel. Our last work [11] considers a 

richer scenario where a device adopts several, independent energy harvesting subsystems (like a photovoltaic panel 

and a wind turbine), and it considers the error between the real energy production and the forecast to weaken the 

constraint of energy neutrality, by allowing slight deviations to occur. The deviations can then be recovered in the 

next period.  

Figura 1 Battery levels in the sensor (on the left) and in the sink (on the right) for all months of the year [7] 

3. Testbed and Datasets 

Most of the works pursuing energy neutrality are evaluated by means of simulations that model on one hand, the 

energy states of the hardware components of the device for estimating its consumption and, on the other hand, the 

solar energy production that will permit increase (or decrease) its energy availability. The solar energy production is 

estimated based generally on the ideal daily production, which could be reduced by the presence of clouds, shadows, 

and other meteorological events that are not usually included in the simulations, which, therefore, lack of the realism 

that we would find in a real deployment. This fact motivates the need of using real testbeds for experimenting energy-

aware solutions and, in parallel, for collecting data of energy production that can serve as basis for algorithms with 
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different purposes, as the search of the optimal energy-neutral schedulings that maximize the applications utility or 

the development of precise energy forecasting models. This last purpose is covered in several works that describe real 

energy solar-harvesting testbeds [2], [12], [13], which are based on the proprietary platform VISE, and the commercial 

platforms TelosB and Waspmote, respectively. The three works have published the collected datasets as a result of 

their deployments, further used for feeding the forecast of solar energy. However, as far as the authors know, there 

exist no previous work that proposes an energy-harvester device specifically designed to experiment different energy-

neutral schedulers for IoT devices and to assess models and algorithmic solutions for the management of such devices. 

So, with this purpose in mind, we have developed an energy-harvesting device based on a photovoltaic solar panel, 

specifically designed for evaluating different energy harvesting algorithms and Internet-of-Things applications. To 

this end, the device is composed of two independent, both functionally and energetically, microsystems: an IoT node 

and a Data Logger node. A detailed description of this device can be found in [14] and [15]. We have used this testbed 

to conduct a data collection campaign that generated a dataset from the environmental and energy-related data sampled 

with a period of 1 minute.  

The testbed (in Figure 2) was installed in Ciudad Real (Spain) and operated without interruptions during the period 

between July 31st to October 4th, 2018. The dataset comprises 93438 data records, is public and can be downloaded 

at https://github.com/arco-group/energy-harvesting-dataset.git. In this first data collection campaign, the 

testbed stored the readings into a memory card.  

Figure 3 shows the data collected between August 1th to 3th of October. In a second data collection campaign, our 

testbed was installed on a vineyard and used a LoRa communication module to transmit the data towards a gateway 

[16]. In turn, the gateway forwarded the received data through a WiFi connection towards a network server where the 

data were permanently stored. Figure 4 shows the dashboard designed for the real-time data visualization. 

4. System Architecture 

IoT devices tend to include multiple choices for Internet connection, through for instance WiFi, LoRa, Bluetooth, and 

SigFox network technologies, as one of the main foundations of IoT is to make people and things to be connected 

anytime, anyplace, with anything and anyone. 

This characteristic is favouring more distributed scenarios where the IoT devices are close to interact with services 

and resources allocated on remote sites for carrying out their purposes in a better way. In such scenarios, the devices 

may access to the external network both for obtaining more up-to-date data to perform their computations and for 

locating these computations on remote nodes that can execute them in a more efficient way, for instance, by 

minimizing performance metrics as the overhead, the latency, and the energy. The combination of IoT with cloud and 

fog technologies [17], [18] enable the IoT devices to delegate their workloads and storage needs on nearer edge nodes 

Figura 2 Deployment of our energy-harvested IoT prototype on top of a building of University of Castilla-La 

Mancha, Ciudad Real (Spain). 
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resulting in lower response times and overhead. The problem that we are addressing fits especially well here, since an 

IoT device could on one hand, to emplace the energy-neutral scheduler on an adequate edge node, and on the other 

hand, to download meteorological forecasts (e.g. temperature, wind speed, rain probability) from different weather 

online web services that can be used to feed the energy production model.  

Figure 4 shows a system architecture that supports the described scenario. We consider a LoRa-based network 

composed by several of our solar energy-harvesting device acting as end-nodes, each one executing an IoT outdoor 

monitoring application as described in [16]. As already mentioned, the device integrates sensors for measuring both 

meteorological conditions (e.g. temperature, humidity) and energy-related data (e.g. solar production, node 

consumption, and battery level) and makes usage of its LoRa radio to transmit the samples towards a gateway with 

capabilities of data logging and wireless connection to Internet. In order to avoid high latencies, to reduce the energy 

consumption of the IoT device and because of the IoT device could not be able to access directly to the weather online 

services, the gateway will be in charge of downloading the forecasts from one ore several weather services and storing 

them into a database. In turn, at the end of each day the IoT device will access the gateway for obtaining the forecasts 

for the next day previously stored, that are necessary to perform the estimations of the energy production. Alternatively, 

the IoT device may also decide to centralize or distribute the computations of the schedule between one or several 

edge/fog nodes based on performance criteria. The correct placement of these computations, in the node itself, in the 

edge devices or in the cloud, represent an important design decision that we would like to explore in the future.  

5. Conclusions and Future Works 

The testbed for the collection of dataset concerning energy production and consumption in IoT nodes and the dataset 

already collected are the first steps of a longer-term research, that aims at identifying proper tradeoffs between QoS 

Figura 4 On the left, a dashboard to visualize the data collected by our device. On the right, a three-

layered cloud architecture for IoT energy-neutral devices. 

Figura 3  Energy production from the panel, current drawn by the battery, IoT node current, battery 

voltage, temperature, wind speed and humidity collected during three days of the reference period. 
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of the IoT activities and power consumption within the constraint of energy neutrality of the devices. These tradeoffs 

depend also on considerations related to the cost and to the computational power of the device. Costs are relevant 

because they determine physical parameters of the device concerning the battery capacity and size and the photovoltaic 

panel size and efficiency. The computational power, on the other hand, determine the maximum feasible complexity 

of the scheduling algorithms that can be employed. Considering IoT devices involved in multimedia data production 

and processing, which are usually high-end IoT devices, with higher computational and communication performance 

and memory capacity, this tradeoff may allow, at least in principle, the use of more complex and scheduling algorithms 

supporting a larger variety of alternative tasks exposing different QoS, and a control of the battery charge and power 

production with a finer resolution. This research is, however, still in its early phase, as most research efforts so far 

focused on low power IoT devices. Our expectation is that datasets such as those that we are producing will result a 

valuable tool under this respect.  

For this reason, we will pursue several directions in our future work to consolidate our achievements. Firstly, we plan 

to consolidate the dataset, by running several data collection campaigns over different periods of the year and in 

different weather conditions. Secondly, we will consolidate the integration of the prototype with fog/edge and cloud 

technologies to explore more complex applicative scenarios which may involve both IoT devices and multimedia 

communications, and, finally, we will consolidate the collection of weather forecast data from public channels to 

complement the dataset. 
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1. Introduction 

During the last few years, edge and IoT devices have increased their computing and storage capabilities enormously, 

being able to not only sense and forward the gather information but also to store and compute it [1]. This increase has 

also allowed developers to take these devices as possible destination for the deployment of their applications and APIs.  

Devices closer to the users can better satisfy important requirements of some APIs and applications, such as 

responsiveness, location-awareness, etc. [2]. Nevertheless, these devices also present some important restrictions 

regarding resource consumption (battery, data traffic and so on) that should be taken into account during the decisions 

process of where to deploy them [1].  Currently, developers have to carefully analyze every deployment layer and the 

available devices to identify the environment that better meet the system requirements. This is a complicate process 

in which developers need tools assisting them or they end up selecting the environment in which they feel most 

comfortable. 

In addition, developing and deploying an API or an application on IoT and edge devices is not an easy task. Usually, 

these devices have stringent requirements and closed operating system. For instance, Android-based devices have 

some security features hindering how the API should be developed and how other users can get information from it 

[3]. This is another point leading developers to choose environments for which development is simpler. 

In this paper, we propose, first, an application assisting developers in the decision making process of selecting the best 

possible environment for their APIs; and, second, a set of tools facilitating the generation of the APIs skeleton for the 

selected environment. Thus, developers can easily evaluate and select any environment for the deployment of their 

APIs without having to devote an extra effort. 

2. Motivation and Related Works 

During the last few years, the Cloud has been the predominant environment for the deployment of APIs. In this 

environment the most demanding features, like storing or computing the managed data, are offloaded providing 

improved scalability, fault tolerance and a greater control of the operational costs. It also allowed developers to 

implement applications with good response time that can be visualized and used from end devices, that until a few 

years ago had very limited capabilities.  

In the last few years, edge and IoT devices’ capabilities have increased tremendously. Their storage and computational 

capabilities have increased in order to be able to execute more complex tasks. This allowed researchers to develop 

new paradigms, in which the whole or part of an application or API is onloaded in edge devices, reducing the network 

load and the dependency of Cloud environments and improving the response time. For instance, by using data closer 

to, or even inside, the targeted device.  

Therefore, developers not only have to take decisions about how to develop a specific API but also where it should be 

deployed to better meet the system requirements. This is complex trade-off among the system requirements, and the 

capabilities and limitations of the different devices in the environment. Deploying and API on the Cloud could increase 

the system scalability or the fault tolerance, but could also negatively affect the operational cost, location-awareness 

and responsiveness [2].  Deploying an API on edge or end devices could positively impact these requirements, but 

they also present some important limitations. For instance, a constrained factor of these devices is the resource 

consumption (battery, data traffic, etc.) [4]. Many of these devices, such as mobile phones, smart speakers, etc. are 

battery powered. Likewise, some of them have to interact using the mobile network, either because they are mobile 

or because of their specific situation, which entails a consumption of the data plan.  In the deployment of any API, the 

correct management of these resources is crucial for the user satisfaction. It is well known that resource consumption, 

is a factor determining the application success [5]. All these dimensions have to be taken into account to select the 

deployment architecture that best fit the system requirements, doing a trade-off among the capabilities and limitations 

of every involved device and the system requirements.  

Some works both in the academia and in the industry domains are focused on analysing the final developed and 
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deployed application for identifying if those requirements are met. For instance, Giovani et al. [6] presented some 

years ago a monitoring framework able to adjust the resources assigned to the deployed application or to face transient 

failures replicating and restarting components to provide resiliency. Leitner et al. [7] proposed a tool to continually 

re-evaluate the cost of an application in the background. Or, for Android devices, Batterystats [8] could be used to 

collects battery data about the consumption of an specific application. Other proposal, however, are focused on 

evaluating during the early stages of the development process how these requirements can be met, helping in the 

decision making process of which deployment architecture is the most suitable. For instance, [9] proposes different 

heuristic to identify where microservices should be deployed to better meet some requirements such as responsiveness. 

Likewise, the authors of this paper have been working on defining a conceptual framework [1] to identify in early 

development stages what deployment architecture is the most appropriate to reduce the  resource consumption. 

However, the application of the previous framework remains a manual process. The developer must specify the 

application, apply the established formulas and try to identify the consumption trends of the application for each 

architecture. For small applications, this is simple, but as the application grows, the application of this framework 

becomes difficult. Tools assisting in this process are required to easily selected the best deployment architecture for 

each application. 

Once identified the most appropriate deployment architecture for achieving the system requirements, the API has to 

be developed and deployed. Currently, the specification and development of microservices is supported by a large 

number of tools that facilitate the work of the developer. Specifications such as OpenAPI [10], are widely used to 

detail an API, generate the documentation and, even, perform tests. This type of tools can even generate the source 

code for different technologies such as Node.JS, Kotlin, JAX-RS, etc. [11], but they are focused on deploying the API 

on a server or on a cloud environment. There are fewer commercial tools supporting other deployment architectures, 

based on Fog, Mist or Edge computing. However, at the research level, more and more proposals are presented 

detailing how to use these specifications to generate the skeleton and to deploy microservices on other elements of the 

network. For instance, Noura et al. propose WoTDL2API tool, that automatically generates a running RESTful API 

based on the OpenAPI specification and its code generation toolchain to control different IoT devices [12]. The 

generated source code can be deployed on edge devices, such as gateways, routers, and so on. Nevertheless, tools are 

still required to generate APIs that can be deployed on IoT devices.  

In the next two sections, we present, first, a tool assisting developers in the decision making process of selecting the 

best deployment architecture for an application; and, second, a set of tool that can be used to generate the skeleton of 

an API that can be deployed on a Cloud environment or in Android-based IoT devices (such as smartphones). 

3. Tools helping in the decision-making process 

To assist developers in selecting the best deployment architecture, a web application [13] has been created for 

estimating the resource consumption for different deployment architecture options (such as based on the Cloud or on 

IoT devices), as well as its evolution for different scenarios.  

In order to generate these specifications, the developed application requires the specification of the most important 

features of the API for the different deployment architectures that must be estimated.  This specification is based on a 

set of common primitive operations together with their associated resource consumptions identified in the conceptual 

framework presented in [1]. Any application can be described as a combination of these primitives, thereby allowing 

the application’s resource consumption to be estimated for each architectural option. 
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Figure 1. Scheme of the application specification to estimate consumption. 

The specification of the application to estimate is provided in a JSON format file. Fig.1 shows the scheme of said file. 

The most important elements are: 

 name, name of the application.  

 architecturealViews, list of the deployment architectural options that have to be estimated. 

 lVariables: list of variables and parameters that can be used to simulate the behavior and evolution of the 

application (such as the number of users, the size of the information they transmit, etc.).  

 lArchitectures: specification of the application behavior for each architectural option. First, the name of the 

architectural option (arName) has to be specified and, second, the behavior of the use cases or features of the 

application (useCases) has to be detailed. Each feature is detailed using the primitive operations that can 

simulate the desired behavior. The information that has to be specified is: 

1. The name of the use case (ucName).  

2. If there is any variable affecting the use case and its behavior (usedVar). 

3. And, the list of primitives in which the use case is broken down (lPrimitives). For each primitive the 

developer has to detail: type, the primitive operation by its name; usedVar, the variables affecting the 

behavior of the functionality; and, lOperations, which are the parameters that these primitives expect to 

receive in order to better estimate their exact consumption (such as the size of the information to be 

received or sent). 

Once the different architectural options are detailed and provided to the web application, it returns the estimated 

consumption of the application in CSV format, so it can be easily processed to visualize the consumption of each 

deployment architectural option. Fig.2. shows and excerpt of the CSV file and a chart showing the estimated 

consumption of a Cloud-based deployment architecture. 
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Figure 2. Example of results and visualization. 

This tool assists developers on identifying what deployment environment can better meet the system requirements and 

when and application or an API has to be migrated from one environment to another in order to keep meeting the 

system requirements. 

4. Facilitating the generation of applications for different deployment architectures 

Likewise, the authors of this paper have recently proposed a set of tools [14] to generate and deploy a running RESTful 

API based on the OpenAPI standard on Android-based end devices such as smartphones, IoT devices, etc., simplifying 

the development of these applications.  

As can be seen in Fig.3,  the first step is to define the application, this task is done using OAI (OpenAPI Specification) 

[15]. The different features and microservices of the API has to be specified as if they were going to be deployed on 

a Cloud environment.  

 

Figure 3. Process to Generate Client-Centric Application 

Second, the API skeleton is generated. Currently, there is a OpenAPI Generator that can be used to generate the 

scaffolding of an API that is going to be deployed on a Cloud environment. For developers needing to deploy the API 

in an end device, all this source code has to be manually written hindering its development. In order to facilitate the 

selection of this deployment architecture, the OpenAPI Source Code Generator has been extended so that services or 

functionalities can be automatically generated and deployed on Android-based IoT devices. Then, these services can 

then be consumed by third entities.  

As Android-based devices (mainly smartphones) have the communication channels restricted in order to increase the 

system’s security, the communication logic of an API Rest for this devices has been implemented (and provided as 
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part of the generated API skeleton ) using Firebase Cloud Messaging (FCM) [16].  

Finally, any microservice or functionality can be invoked sending a Push Notification to the IoT devices. Thus, the 

functionality is executed in the end devices and the result is returned to the client. 

This set of tools allows developers to easily deploy APIs on Android-based IoT devices using the same technologies 

that they usually use when they have to be deployed on Cloud environment reducing the technological gap between 

both environments. 

5. Conclusions 

APIs and applications’ backend until now have been designed and developed to be deployed on a Cloud environment 

because of its computing capabilities, fault tolerance, responsiveness, etc. Nevertheless, the ever-increasing 

capabilities of other elements in the networks has fostered the deployment of these APIs and application on these 

devices to better meet some requirements such as scalability, interoperability, real-time responsiveness, security or 

location-awareness. 

Nevertheless, for developers to apply the best deployment architecture, first, they need tools helping in the decision 

making process by providing information for each option about the degree of compliance of the requirements; and, 

secondly, tools supporting and reducing the effort required to develop and deploy the API for the selected architecture 

are needed. If these tools are not provided developer tend to use only known architectures and those with a greater 

support. 

In this paper, we presented some tools assisting developers in both steps of the development process, reducing the 

technological gap between deploying an application on a Cloud environment or on edge or IoT environment. 
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Abstract 

Multi-access Edge Computing (MEC) brings storage and computational capabilities at the edge of the network into 

so-called Edge Data Centers (EDCs) to improve the performance of low-latency applications. For this purpose, 

effective deployment of EDCs in urban environments is crucial to minimize outages and perform load balancing 

properly. Our study specifically tackles this issue. To deeply understand the variation of computational demand of 

EDCs at urban scale, the analysis of cities complex dynamics assumes a primary role. This work aims to develop a 

methodology for an effective deployment of MEC EDCs in urban environments by considering the mobility of citizens 

and their spatial patterns. To this end, we propose and compare two heuristics. In particular, we present the mobility-

aware deployment algorithm (MDA) that outperforms approaches that do not consider citizens mobility. Simulations 

are conducted in Luxembourg City by extending the CrowdSenSim simulator and show that efficient EDCs placement 

significantly reduces outages. 

 

1. Introduction 

The fifth generation (5G) mobile networks rely on Software-Defined Networking (SDN) and Network Function 

Virtualization (NFV) to support next generation services. Radio access and core functions are virtualized and executed 

in edge data centers (EDCs) according to the Multi-access Edge Computing (MEC) principle. MEC is a key enabler 

for 5G mobile networks and was standardized by the European Telecommunications Standards Institute (ETSI) [1]. 

Formerly known as Mobile Edge Computing, MEC aims at providing computing service closer to the end user by 

bringing applications and services at a close distance to the end user [2]. Thus, it finds applicability in scenarios where 

locality and low-latency are essential [3].  

The edge, also known as MEC host, is a data center or nano data center deployed close to the base stations inside an 

infrastructure owned by a mobile network operator (MNO). The edge provides computing functionalities and can 

aggregate virtualized core and radio network functions of the mobile network. Such principle originates from the 

concept of EDCs and enables resource-constrained mobile devices to prolong battery lifetime while enhancing and 

augment performance of the mobile applications [4]. 

To this date, the research of edge computing has mainly focused on resource management and allocation by trading 

power consumption and communication delays while seminal works have mainly focused on the definition of 

architectural design principles [5]. Emulation platforms for research in the area have only started to appear recently 

[6] and little attention has been paid to the problem of resource deployment.  

EDC deployment is a particularly interesting and challenging problem in the context of smart cities. To the best of our 

knowledge, only a vision paper has explored such area by assessing the feasibility of leveraging three different 

infrastructures, i.e., cellular base stations, routers, and street lamps and analyze the potential city coverage if only a 

subset of these elements is upgraded to furnish EDC capabilities [7]. This study is an important step forward to solve 

the problems of coverage, EDC selection and user-to-EDC assignment. However, it does not consider that urban 

mobility plays a key role in designing architectures for Edge computing. Citizens mobility is influenced by many 

factors, including trip purposes and geographically imposed restrictions, such as home and work location. These 

complex phenomena (called urban dynamics in the rest of the paper) consistently impact the computational demand 

of BSs and EDCs that changes over time and in turns devise effective EDC deployments. 

In this paper, we bring the research in edge computing one step forward. Specifically, we tackle the problem of EDCs 

deployment in a smart city context by considering two factors. First, we consider cellular connectivity for network 

access and assume that EDCs should only be deployed at current Base Stations (BSs) sites to re-use already deployed 
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infrastructure (e.g., power supply, cabinets on roofs). Thus, our solution is capital-expenditure free for mobile network 

operators. Second, we focus on human mobility. Within a city, complex dynamics regulate the inter-dependency of 

land use and citizens movements [8], i.e., the spatial distribution of citizens and locations they visit that determine 

mobility patterns. Similarly to [9], we exploit crowdsensed data to infer human mobility with the goal of determining 

estimates of computing demand and the optimal EDC deployment that minimizes outages. Specifically, we leverage 

Google Popular Times to estimate citizens mobility that reflects daily urban patterns. For these reasons, we focus on 

citizens mobility during a day and consider LTE traffic generated from mobile users. 

 

Fig. 1    Traffic generation in Luxembourg City at different hours of a working day 

Fig. 1 shows the heatmaps of the potential computing demand of the BSs in Luxembourg City according to the citizens 

mobility based on Google Popular Times (https://support.google.com/business/answer/2721884) in a weekday. BSs 

under heavy loads are mostly around the railway stations when citizens commute (i.e., H: 8:00 and H: 17:00) and 

sparse around the city during the day. By considering different hours of a day, loads of BSs vary and, in turns, the 

potential computational demand at EDCs, which motivates our research in EDC deployment. 

2. MEC EDCs Deployment based on Human Mobility 

This Section formulates the problem of EDC distribution over urban environments and presents the system model that 

captures MEC dynamics (both at computing and networking level) and citizens mobility. 

2.1 MEC Model 

Given a set of BSs characterized by latitude and longitude that define their location in the city, our aim is to deploy a 

set of EDCs at BS sites to re-use already deployed infrastructure (e.g., power supply, cabinets on roofs).  This provides 

full spatial coverage and is more cost-effective than creating new EDC sites [7]. We consider as Key Performance 

Indicator (KPI) the latency outage probability of the system O, defined as the probability that the latency the user 

observes and is over the maximum acceptable delay bound defined in the form of SLA agreement for the current 

application. We need for the latency outage probability of the system to measure the Round-Trip-Time (RTT) to 

capture the fact that if a user does not receive a reply from the EDC, the task is not accomplished and O increases. 

This can happen when the EDC rejects the incoming task because it is overloaded, or when the user does not receive 

the reply in due time because of either processing or networking delays.            

Given a fixed number of EDCs to deploy, our problem consists in finding a match with the location of existing BSs 

to minimize the average latency outage probability of the entire system (e.g., to maximize the computational capacity 

of the system).  

To assign EDCs to BSs, the city environment is divided into a set of regions. The EDC of each region is connected to 

all BSs within the region and responsible for both applications and baseband processing. Each EDC has a fixed number 

of servers with an equal service rate . When the service rate is not sufficient to fulfill a task in due time, it is rejected 

by the system. We assume no service migration across different EDCs when the users move within the same region. 

Otherwise, the service is simply detached from an EDC and attached to another according to, e.g., a micro-services 

stateless paradigm. Finally, we assume the mobile users are always connected to the closest BS.  Users generate 

heterogeneous application-dependent types of tasks [10]. The task arrival is modeled with a Poisson process with 

arrival rate   for each user. To access the EDC processing, a user sends a message which is acknowledged if EDC 

resources permit its execution. The latency L of the request/reply exchange includes both network and processing 

delays [11]. The network delay Dp consists of different components, such as transmission, propagation, queuing, and 

routing. The processing delay Dc depends on application processing and packet processing at the network level. Each 

EDC is modeled as a M/M/Ns queue with Ns servers. The processing delay, which represents the task execution time 

d) H: 8.00 e) H: 12.00 f) H: 17.00 
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in an EDC, is calculated considering the fraction of accepted tasks in the EDC and the average queueing time, which 

is given by the Erlang's Formula [12]. 

Users mobility defines spatial patterns of citizens movements and their social interactions, influencing the demand for 

computing resources. In this work, to characterize urban mobility, we exploit the popularity of Local Businesses (LB) 

taken from Google Popular Times, given in per-hour values normalized between the weekly maximum and minimum 

number of customers of each LB. Note that the real number of customers remains unknown. Hence, one of our 

contributions explained hereafter, is a new approach to estimate the number of customers from the coarse 

measurements available. The popularity metric is then used to approximate users temporal distribution among 

different LBs. For each type of LB, we consider a random value between 0 and Nmax, where Nmax is the maximum 

value of customers. This value and the average waiting time of staying in a LB permits to compute the number of 

people who remained at that LB. The aggregation of different LBs in a region defines how crowded a district is. 

2.2 EDCs Deployment Policies 

The placement policy and BSs assignment to EDCs are keys for effective EDCs deployment. We propose and compare 

two placement policies. The first one is called distributed deployment algorithm (DDA) and deploys EDCs so that 

they are the centroids of a cluster composed of a set of BSs that all share a similar distance. The second policy, called 

mobility-aware deployment algorithm (MDA), considers the mobility of citizens and their social interactions in urban 

environments to calculate the expected computational demand and distribute edge resources by exploiting them as 

weights. 

DDA places EDCs and assigns BSs to them by exploiting the k-medoids clustering algorithm, which is similar to the 

more famous k-means but chooses the centroids between the input data. In other words, it clusters BSs and chooses 

EDCs as centers of the clusters between the BSs within a cluster. The main shortcomings of this approach consist in 

some under-utilized EDCs and others that suffer of big delays due to overloads of computational demand leading to 

high values of outage probability. To overcome these issues, two possible directions can be investigated. First, to 

propose a more effective placement of EDCs among the BSs. Second, to allocate servers among EDCs proportionally 

with the computational demand.                                                                                                                                                                                    

MDA aims to decrease the overall outage probability of the system by considering where the computational demand 

is higher according to the spatial patterns of citizens. In other words, it is based on the idea to consider the complex 

dynamics of a city (e.g., user mobility and social interactions) to propose a more effective placement of edge resources. 

As DDA, MDA places EDCs among BSs by exploiting the k-medoids algorithm, but it assigns EDCs among BSs by 

computing a cost based on the number of requests received by BSs and corresponding computational demand for 

EDCs. 

3. Performance Evaluation 

To conduct simulations, we consider the real infrastructure of 141 BSs in Luxembourg City for public mobile 

communication network over 50W (https://data.public.lu/fr/datasets/cadastre-gsm/), which is imported as a layer on a 

map to extract latitude and longitude of each BS (https://map.geoportail.lu/). Users generate traffic with an arrival rate 

i set in the range [0 - 2.99] [10]. The service rate of each server is =100.  

To simulate user mobility in realistic urban environments, we extend CrowdSenSim [13] originally developed for 

mobile crowdsensing [14]. We operate in Luxembourg City and consider 1,083 LBs belonging to 13 different 

categories (e.g., restaurants, banks, etc.) from Google Popular Times. 100,000 pedestrian walk on the city street 

network over the city according to a mobility model weighted through the popularity of LBs. The simulation period 

is 24 hours of a working day given by the average of days between Monday and Friday.  
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Fig. 2 Distributed (DDA) and Mobility-aware (MDA) Deployment Algorithms 

Fig. 2 presents the deployment of 8 EDCs with DDA and MDA approaches in Luxembourg City. Circles and stars 

represent BSs and EDCs, respectively. BSs are assigned to an EDC of the same color. This result unveils that 

considering the mobility of citizens leads to a significantly different EDC deployment. On the one hand, DDA deploys 

EDCs so that all the controlled BSs experience a similar distance. On the other side, the MDA approach deploys EDCs 

among BSs that experience higher computational demands. Specifically, with MDA most of the EDCs tend to be 

deployed closer to the city center and two of them in the north-eastern district of the city (Kirchberg area), which are 

the most important working and business districts of Luxembourg City and are very crowded during working days, 

especially at lunchtimes. 

 

Fig. 3   Total Outage Probability in a working day with a different number of EDCs                                             

(number of servers per EDC fixed to 10) 

Fig. 3 shows the per-hour outage probability in a working day for the proposed approaches with a fixed number of 

servers per EDC (10) and varying the number of EDCs.  

Fig. 3.a illustrates the outage probability for the DDA approach. MDA clearly outperforms DDA, as shown in  Fig. 

3.b. Interestingly, the results show that the variation of the number of EDCs shows a different behavior of the two 

approaches. By increasing the number of EDCs in the city makes the outage probability of decreasing proportionally 

for DDA. This is not true in MDA as having 9 or 10 EDCs makes little difference. 

We now fix the number of deployed EDCs in the city (8) and investigate in Fig.4 the per-hour outage probability by 

varying the number of servers for each EDC. Fig. 4.a illustrates the DDA approach. The increase of the number of 

servers per EDC does not decrease the outage probability as it does the deployment of additional EDCs (see result 

discussed in Fig. 3.a). With a fixed number of EDCs, MDA still outperforms DDA, as Fig. 4.b shows 

b) MDA a) DDA 

a) DDA b) MDA 
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Fig. 4   Total Outage Probability in a working day with a different number of servers                                                 

(number of EDCs in the city fixed to 8) 

4. Conclusions 

This work tackles the problem of EDCs deployment in urban environments. We show that the performance of low-

latency and high-bandwidth applications can improve by considering citizens mobility and their social interactions. 

We model the computational demand and citizens mobility aiming to formulate a problem for minimizing the outage 

probability. Then, we propose two heuristic algorithms. The first one (DDA) deploys EDCs on the sole basis of the 

spatial distances EDCs-BSs, while the second (MDA) is aware of citizens mobility and the expected computational 

demand. The results show that the policy MDA makes lower the outages, thereby proving that considering citizens 

mobility for EDCs deployment in urban environments is effective. 
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SPECIAL ISSUE ON Future Network Architecture, Technologies, 

and Services 

Guest Editor: Mohamed Faten Zhani, ÉTS Montreal, Canada  

{mfzhani}@etsmtl.ca 
 

This special issue of Frontiers focuses on Future Network Architecture, Technologies, and Services. This topic 

is currently gaining momentum and several research teams are working to reinvent the Internet architecture, protocols 

and technologies in order to adapt it to the requirements of future multimedia applications like virtual and augmented 

reality, holoportation, and telepresence. For this special issue, we invited leading research groups to submit two 

papers on the topic in order to highlight their latest achievements and provide their insights on the key research 

challenges and directions. In the following, we briefly summarize the main contributions of these papers. 

The first paper by L. Dong and R. Li entitled “Big Packet Protocol: Advances the Internet with In-Network 

Services and Functions” presents an overview of the key challenges and requirements of future Internet services and 

applications. The authors also summarize the recent research of the authors on how to address those requirements, 

mainly through the Big Packet Protocol, a novel protocol that extends the current IP protocol with new features 

including the possibility to include commands and Metadata in packets. The article presents two scenarios showing 

how this new protocol could help to support the requirements of future applications. 

In the second paper entitled “Towards 6DoF Virtual Reality Video Streaming: Status and Challenges”, 

J. V. D. Hooft, M. T. Vega, T. Wauters, H. K. Ravuri, C. Timmerer, H. Hellwagner, and F. D. Turck focus on Virtual 

Reality video streaming as it is one of the most prominent applications of the future. The authors provide an overview 

of the existing solutions for the delivery of immersive video with six degrees of freedom (6DoF) including image-

based and volumetric media-based solutions. The article highlights and discusses key research challenges and 

opportunities to address 6DoF virtual reality video streaming including content representation and encoding, rate 

adaptation algorithms, application layer protocols, and in network optimizations.  

The purpose of this special issue is to introduce several state-of-the-art research efforts and future challenges 

pertaining to Future Network Architectures, Technologies, and Services. The valuable contributions 

of abovementioned renowned researchers make the special issue an excellent reference for the readers. 

The guest editor is thankful for all the authors for their contributions and their support to the MMTC 

Communications – Frontiers Board. 
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Big Packet Protocol: Advances the Internet with In-Network Services and Functions 

 

Lijun Dong, Richard Li 

Futurewei Technologies Inc., Santa Clara, CA, U.S.A 

ldong@futurewei.com; richard.li@ futurewei.com

1. Introduction 

Most traditional communication media, including radio, television, paper mails and newspapers are reshaped, 

redefined, or even bypassed by the Internet, giving birth to new medias, which have been globally accessed by us on 

the everyday basis, such as email, e-banking, online shopping, digital audio/video, social media and IP based phone 

calls as shown in Figure 1. Internet has tremendously facilitated our daily lives. 

 
Figure 1. Current Multimedia Content and Internet Applications 

What is envisioned to happen to the Internet in the next 10 to 15 years [33]? There will be abundant bandwidth 

everywhere, everything will be connected to the Internet, new medias and critical applications emerge (Figure 2). 

Enabled by Internet of Things (IoT), our living environment will become more intelligent and personalized, such as 

smart city, smart home and smart building. The media will become more enriched and immersive, such as 3D 

teleconferencing, holographic communication. The applications requiring extreme low latency, such as remote surgery, 

factory automation and self-driving vehicle will significantly change people’s ways of living. 

 
Figure 2. Features of Internet in 2030 

The number of IoT devices that connect to the Internet has grown explosively in a global scale in the past years, which 

will keep growing at a more rapid speed in the future. Ultimately, everything will be connected to the Internet and 

become accessible anywhere in the world. The trillions of things will generate huge amount of traffic in the Internet. 

One major requirement is how to reduce the data exchange from and to IoT devices in order to improve the lifetime 

of the devices and network resource efficiency.  

Machine to Machine (M2M) communications have several outstanding properties. Machines never sleep and can be 

always online if they have enough power. They can generate images and videos with higher resolution, which is 

beyond what human eyes can perceive. The information processing needs to be extremely fast, the reaction and 
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feedback time from different entities needs to be synchronized and coordinated. The latency needs to be guaranteed 

with high precision.  

On the factory floor, robots, motion controllers, Programmable Logic Controllers (PLCs), and other manufacturing 

equipment work together in a synchronized fashion as products roll down the assembly line. This requires making 

everything to work with strict pre-defined pattern, which is generally dependent on real-time and deterministic 

performance of the equipment. Real time indicates a system is able to react rapidly enough to service all critical events. 

Determinism is a measure of the variation in a system’s response time to a particular event. One measurement is the 

jitter performance, which is defined as the worst-case execution time minus the best-case execution time.  

Consequently, new network services and functions are needed to enable those applications. For instance, deterministic 

low latency services means that the latency experienced by the user will be ensured by the network to be within a 

certain deadline, or at a specific time period. In-network computing will push the computation resources nearer to the 

end users. The underlying network infrastructure will become more diversified and complementary to each other to 

provide interconnection among people, devices and any other accessible things.  

The current Internet infrastructure provides only the three following services:  

 Best effort is the first and most widely used service, in which QoS (Quality of Service) is not provided. 
Reliability is guaranteed by and only by retransmission. Neither its throughput nor its latency is guaranteed. 

 Differentiated Service (DiffServ) has up to 8 classes of services. The services are differentiated hop by hop 
instead of the whole forwarding path. There is no quantitative control or assurance for its end-to-end 
behavior. Neither its throughput nor its latency is guaranteed. 

 Traffic Engineering (TE) guarantees explicit paths and bandwidth, as well as provides fast-reroute in MPLS 
(Multiprotocol Label Switching) networks. But neither its throughput nor its latency is guaranteed. There is 
no differentiation among different types of traffic, nor service quality (e.g. reliability, bandwidth) from IP 
layer, which needs upper layers to partially resolve service quality issues. 

Unfortunately, these services are not sufficient for several future applications, which have new requirements like 

a zero jitter, time-guarantees, lossless delivery and high throughput. Recently, some technologies have been developed 

to further improve these basic services but they are still limited. For instance, IPv6 [35] only changes the addressing 

scheme. Segment Routing Version 6 (SRv6) [36] provides only programmable source routing. MPLS provides only a 

way to implement traffic engineering and Virtual Private Network (VPN) services. The MPLS RSVP-TE (Resource 

Reservation Protocol Traffic Engineering) [37][38] guarantees bandwidth, but does guarantee neither throughput nor 

latency. Software Defined Networking (SDN) [39][40][41] changes the way to control networks. Network Function 

Virtualization (NFV) [42][43] changes the way to implement network functions. However, none of the above 

technologies change the nature of the Internet and the traditional statistical multiplexing and best effort forwarding. 

The underlying IP protocol is still the same for the last 50 years. Today’s Internet is therefore not ready for the next 

decade.  

2. Big Packet Protocol (BPP) 

IP datagram used to be called as “lettergram” in its early history, and it has many similarities with the postal service. 

However, today’s postal service has evolved. It is now possible to track a package online and know its precise arrival 

time. It is also possible to customize the way the package is delivered and to ask for a signature at the delivery to 

ensure the acknowledge it.  

With the target of offering similar features, we have proposed an evolutionary framework, called Big Packet Protocol 

(BPP) [44]. BPP extends the current IP packet and brings minimal changes to the current Internet protocols. The 

in-network processing of packets is guided by commands and metadata carried in the BPP packet block.  

The “Commands” could describe how the routers treat the packet on each hop as it traverses the network, e.g., when 

to drop, how to prioritize, what to collect, how to forward and how to run function on the packet. The “Metadata” 

contains data about the packet, e.g., the contextual information about the user and the application. The in-network 

node intelligence is naturally embedded and supported by the BPP framework.  
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Packet Header BPP Block Payload

BPP Header Command Block Metadata Block

 

Figure 3. BPP Packet Format 

BPP could enable high-precision networking services by adding customized packet processing rules and incorporating 

dynamic and context-awareness. BPP provides service-level guarantees thanks to in-network measurements and per-

hop decision making. BPP commands only affect the behavior of the packets that carry them, not device as a whole 

or any other packets/flows. Given that the future Internet routers especially the edge routers will be equipped with 

more storage, computation and processing capabilities, BPP can bring the intelligence of user experience, continuity 

and awareness of services into the network. BPP block may be added at the source, encapsulated on a BPP boundary 

(ingress gateway), or inserted in a trusted domain as shown in Figure 4. When BPP header is inserted at the source 

node, it has to be a BPP aware device (BPP host).  
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Figure 4. BPP Deployment 

 

3. New Network Functions and Services Facilitated by BPP 

In this section, we present two examples showing how BPP facilitates new network functions and services, based on 

our previous and on-going research work. 

3.1 In-Network Semantic Mashup Function 

In the domain of web services, mashup refers to combining multiple basic web services in order to create a new one. 

Similarly, the mashup technique is also used to create a new M2M/IoT service in the M2M/IoT realm.  
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Figure 5. Semantic Mashup Use Case 

In the existing semantic of M2M/IoT systems [45], a M2M/IoT application can create and publish "virtual things" that 

act similar to physical resources and could generate new information. Figure 5 shows an example of IoT video 

surveillance use case where surveillance cameras deployed along the roads could capture videos for car traffic videos. 
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Through semantic mashup, the videos could generate the new virtual data like the average traffic speed on the road 

where the surveillance camera is deployed [46]. Additionally, through the semantic mashup of the traffic speed data, 

the average travel time from source to destination can be generated as another higher-level virtual data. The semantic 

mashup can also be applied to compare the average travel time of alternative paths for the same source and destination 

pair, which gives the best path with the least travel time. 

Although semantic mashup has been provided as a service offered by servers deployed in the existing M2M/IoT 

systems [47], this architecture has several limitations: (1) the semantic mashup is done in a centralized way by each 

by the the server, which means the original raw data provided by the physical devices need to be retrieved by these 

servers or from each device, (2)  it does not consider there could be cached copies of original data in the network, thus 

rules out the option that a router may be able to route the requests to nearer cached copies. (3) it does not consider that 

a router may carry out the in-network semantic mashup without transporting the original big-sized data to the Common 

Service Server. Those limitations result in an increase of the user’s experienced latency and in a wastage of the 

network bandwidth. 

 
Figure 6. Inefficiencies of Overlay based Semantic Mashup  

BPP could enable opportunistic semantic mashup in the routers by leveraging a BPP packet as shown in Figure 7 

[48][49][50]. The BPP Command is set up as “SemanticMashup”. The Metadata block includes the parameters that 

are needed for in-network semantic mashup function. The first field is the ultimate target data name (Nth level data) if 

it is known to the requester, which may not be available in the network and requires semantic mashup from other data. 

The second field can optionally include the semantic mashup logic for the Nth level data. The next field is to specify 

the (N-1)th level data that is used for semantic mashup to generate the Nth level data.  Similarly, the (N-1)th level data 

may also be generated from the semantic mashup on other data, whose logic can be included in the following field. 

This can continue till the level 0, which is the raw data produced by the IoT devices. Ideally, in-network semantic 

mashup should happen for 1 or 2 levels at most, considering the overhead caused by the request message transmission, 

as well as the processing overhead and latency introduced at the forwarding routers. 

 

Figure 7. BPP Packet Facilitating In-Network Semantic Mashup Function 

The Mashed-up result can be returned by one of the intermediate routers, which significantly reduces the data size, 

as well as the number of hops that the original raw data traverses in the network. It enables offloading the computation 

overhead from the middleware server or the user terminals, also alleviating the transmission overhead from 

the network. As a result, the latency in getting the target data significantly decreases and the improvement increases 

with the number of data involved in semantic mashup. 

3.3 Qualitative Communication Service 

In the current Internet, a packet is a minimal, self-contained unit of delivery that gets transmitted, classified, or 
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discarded without any discrimination. In other words, a packet is treated as an atomic unit over which network actions 

are performed. As a result, the integrity of the information contained in the packet payload is verified at the packet 

level as well. Checksum computation is carried out on the entire packet.  

A packet could be dropped entirely when the congestion occurs and the buffer space becomes full, and also when 

a part of the packet is corrupted due to lossy links.  When TCP is used, packet loss results in the retransmission 

of the packet. The retransmission of packets incurs unpredictable latency, as well as an increase in the network load, 

consuming extensively more network resources. The retransmitted packet has to re-travel the path towards its 

destination. On the other hand, the sender is not aware that the packet has been dropped until a timeout or duplicate 

acknowledgments are received. This delay extends the time at the sender side before the retransmission can be initiated, 

leading to additional latency and a reduced network throughput.   

Currently, bits in the stream have no meanings, the routers treat them indiscriminately. However, applications perceive 

information semantically, which means that the semantics information associated with the data payload could imply 

what portions are inter-related or are more significant. BPP can make different pieces of the packet become 

independent logic units, which are called chunks. By including the semantics associated with different chunks in the 

packet, the network could perform finer granularity of operations on the packet. One exceptional benefit of the chunk 

concept is that selective chunk dropping is allowed in the network. When network conditions arise that would currently 

require the whole packet dropping, it is allowed for the network to drop those insignificant or less prioritized chunks 

instead of the whole packet. The packet payload can be preserved as much as possible for those more significant 

chunks.   

Qualitative Communication Service [51] is defined as a packetization scheme that breaks down the payload into 

multiple chunks, each with certain semantics or significance. The routers make decisions to selectively drop chunks 

based on the current situation and the significance carried in the packet. A packet under the qualitative communication 

service is called a qualitative packet.  

With Qualitative Communication Service, a packet retransmission may not be required if the receiver has the 

capability to recover the original data or is satisfied with the information left in the packet after removal of certain 

chunks from the payload by the intermediate routers. In this case, the receiver can acknowledge the acceptance of the 

packet, while it may also indicate to the sender that it was partially dropped in the network. Network resource usage 

can be reduced and better prioritized for the delivery of other packets. The throughput for an individual data flow is 

the amount of data moved successfully from one place to another in a given time period. The qualitative 

communication service allows the network to deliver more important information in the packets to the destinations, 

by preventing the packets from being discarded completely. Therefore, the throughput is less jeopardized by packet 

loss, and is capable of reaching a higher effective throughput rate. 

The proposed Qualitative Communication Service requires the support from the application layer, transport layer and 

network layer. Only an application can tell what data can be treated qualitatively and how to treat it. Thus, applications 

need to feed metadata to the network layer. The partial dropping of a packet should be informed to and understood by 

the sender as a warning that some level of congestion is occurring in the network. The network layer needs a well-

formed metadata to conditionally perform operations in a hop-by-hop manner. 

In Qualitative Communications, Packet Wash refers to a scrubbing operation that reduces the size of a packet while 

retaining as much information as possible. BPP could facilitate the proposed Packet Wash operation by setting it up 

in the Command block, with the necessary parameters included in the Metadata block. Different chunks in a packet 

payload can either have different priority/significance or equally important. For instance, the order of the chunks in 

the qualitative packet could be re-arranged such that the least significant chunks are always in the tail, which makes 

the Packet Wash operation easier to be performed (i.e. always drop the chunks in the tail first). In this case, the original 

order of the corresponding chunk should be carried in the packet and informed to the receiver. The BPP Metadata 

block needs to include the following parameters as shown in Figure 9: 

 Condition: under which the Packet Wash operation is triggered, for example the router’s outgoing buffer 
is 90% full.  

 Threshold: beyond which the chunks in a packet could not be dropped anymore, otherwise the packet 
would be considered useless according to the source of the packet.  

 Checksum CRCi : it is used to verify the integrity of the chunk i. In other word, each chunk has its own 
checksum.  
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 Relative offset Offi : it describes the boundary between two adjacent chunks. 

 Original order ORDi : it indicates the original position of the chunk i in the data payload.  

 Flag OFi: it indicates whether the chunk i was dropped or not during the transmission.  

 

Figure 9. BPP Packet for In-Network Packet Wash for Chunks with Different Significance 

Another example is that of a random linear network coding that is applied to the chunks in the packet payload [52]. 

The network-coding granularity is applied to the chunks instead of the packets. Since the linear-network-coded chunks 

can equally contribute to the original packet payload decoding, they have the same importance/significance. The 

sender will include the same number of independent coded chunks as the packet payload. BPP could be leveraged to 

carry the necessary information for the receiver to decode the packet payload, which may go through the Packet Wash 

operation in the network. The BPP Metadata block needs to include the following parameters as shown in Figure 10: 

• PID: it is used to identify the packet identifier for a specific data content originated from a sender. PID only 
relates to the data content and the sender. PID is used to provide a way to match a cached chunk of a data 
content.  

• flag: it indicates whether the payload contains linear-network-coded chunks or not. 

• size: it shows how large the chunk size is. When partial packet dropping happens, the network nodes are able 
to find the boundary of each coded chunk in the payload.  

• coefficients: they are the coefficients with which source chunks are linearly combined to form coded chunks 
contained in the current payload. 

• currentRank: it indicates the current rank of the remaining coded chunks in the payload.  

• fullRank: it indicates the full rank of the coded chunks in the payload when they are inserted by the sender.  

 

Figure 10. BPP Packet for In-Network Packet Wash for Linear Network Coded Chunks 

 

5. Conclusion 

This paper presented our understanding on the challenges and requirements of the future Internet services to satisfy 

the new applications in the next decade. It gives a short summary of our recent researches on how to address those 

requirements, mainly we proposed the Big Packet Protocol that extends the current IP protocol with a BPP block, 

which includes “Command” and “Metadata” fields. A BPP enabled network node could act on those commands and 

metadata to handle the packet, overriding any “regular” packet processing logic. By leveraging BPP, future Internet 

is more intelligent and application oriented to satisfy stringent requirements like deterministic latency guarantee.  

This letter also describes two examples that illustrate the benefits of BPP. The first example shows that semantic 

mashup function can be carried out in the Internet routers, which could more likely be the edge routers to offload the 

computation overhead from the middleware server or the user terminals, to alleviate the transmission overhead from 

the network, as well as to reduce the user’s perceived latency. The second example is a new type of packetization 
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method called Qualitative Communication Service, through which finer granularity of packet processing is allowed 

in the network, yielding less packet loss ratio and retransmissions, higher throughput, and less latency.  
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1. Introduction 

In the last few years, delivery of immersive video with six degrees of freedom (6DoF) has become an important topic 

for content providers. Recent technological advancements have resulted in affordable head-mounted displays, 

allowing a broad range of users to enjoy Virtual Reality (VR) content. Service providers such as Facebook1 and 

YouTube2 were among the first to provide 360° video, using the principle of HTTP Adaptive Streaming (HAS) to 

deliver the content to the end user. In HAS, the content is encoded using several quality representations, temporally 

segmented into chunks of one to ten seconds and stored on one or multiple servers within a content delivery network. 

Based on the perceived network conditions, the device characteristics, and the user's preferences, the client can then 

decide on the quality of each of these segments [1]. Having the ability to adapt the video quality, this approach actively 

avoids buffer starvation, and therefore results in smoother playback of the requested content and a higher Quality of 

Experience (QoE) for the end user [2]. The introduction of 360° video provides the user with three degrees of freedom 

to move within an immersive world, allowing changes in the yaw, roll, and pitch. In the last few years, multiple 

solutions have been proposed to efficiently deliver VR content through HAS, focusing, for instance, on foveas- and 

tile-based encoding, improved viewport prediction (i.e., prediction of the user’s head movement in the near future in 

order to buffer useful high-quality content), and application layer optimizations [3]. In these works, however, the 

location of the user remains fixed to the position of the camera within the scene. Recently, significant research efforts 

have been made to realize 6DoF for streamed video content, i.e., the user may experience three additional degrees of 

freedom by being able to change the viewing position in a video scene. These efforts are promising, but significant 

research contributions will be required in order to realize its full potential. In this paper, an overview of existing 6DoF 

solutions is presented, and key challenges and opportunities are highlighted. 

2. 6DoF Video Solutions 

Two types of approaches to implement 6DoF video solutions are generally considered: image-based and volumetric 

media-based solutions. The former requires a representation of images at every different angle and tilt, while the latter 

stores objects as a collection of points in the three-dimensional space. 

2.1. Image-Based Solutions 

In image-based solutions, the system renders different views of an environment from a set of pre-acquired imagery. 

Images are typically captured using camera arrays (see Figure 7) or cylindrical camera setups, resulting 

in a representation of images at every different angle and tilt. Because different representations are immediately 

available, displaying content corresponding to a given position and viewing direction requires modest computational 

resources [4]. However, the approach results in large storage and bandwidth requirements, since roughly every 

0.3-degree difference in angle requires a new image in order to provide a smooth transition between images [5]. 

While the concept of light fields has been around for two decades, it recently caught more attention as a means 

to provide 6DoF content streaming; in the last few years, several image-based solutions and frameworks have been 

proposed. Wijnants et al. propose a DASH-compliant framework for the delivery of light fields [6]. The authors 

achieve real-time rendering by leveraging video decoding to contemporary consumer-grade GPUs, using disk-versus-

GPU caching in order to render source images more quickly. While the proposed framework allows the user to move 

around and download content in an adaptive manner, only static light fields are considered; delivery of video content 

is not supported. In addition, only single objects are studied in their work. Daniel et al. propose SMFoLD, an open 

                                                 
1 https://www.facebook.com, last accessed: August 19, 2019 
2 https://www.youtube.com, last accessed: August 19, 2019 
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streaming media standard for light field video [7]. This standard allows compliant displays to receive a stream of 

three-dimensional frame descriptions and render scenes without the need for specialized head-mounted devices. The 

authors discuss several technical challenges to realize a fully functional system framework, focusing on encoding, 

streaming and displaying the three-dimensional content. Kara et al. propose a framework for subjective evaluation of 

light field scenes, considering different spatial resolutions and angular differences between images [8]. Similar to 

traditional video, the authors show that quality switching is preferred over long stalling events. Furthermore, they 

conclude that it is beneficial to choose a video representation with both spatial and angular resolution reduced, if the 

smoothness of the continuous horizontal motion parallax cannot be guaranteed. While these research efforts offer 

interesting insights into the possibilities of light fields for 6DoF content streaming, an operational framework for high-

quality image-based 6DoF video streaming does not yet exist. 

 

Figure 7.  Illustration of light field capture from the (New) Stanford Light Field Archive [9]. 

2.2. Volumetric Media-Based Solutions 

Volumetric media-based solutions store objects as a collection of points. Capturing the geometry (x, y, z tuples) and 

color (RGB values) of thousands or millions of points, the object can be rendered from any viewing angle [10]. This 

reduces storage and bandwidth costs, but requires complex preprocessing (i.e., multiple camera angles and depths) 

and rendering at client-side. An example of a capture setup and a generated point cloud object are shown in Figure 8. 

 

Figure 8. Example point cloud capture from the reference MPEG dataset [11]. 

Focusing on video on demand, Hosseini and Timmerer are the first to propose a DASH-compliant approach for single 

point cloud streaming [12]. Rather than using a dedicated encoder, the authors sample the different points to generate 

versions of lower quality. Furthermore, objects are requested on a per-frame basis, which means that a number of 

HTTP GET requests proportional to the frame rate is required. He et al. consider view-dependent streaming of point 

cloud objects, using cubic projection to create six two-dimensional images which can then be compressed using 

traditional compression techniques [13]. The proposed approach relies on a hybrid network (broadband and broadcast) 

and in-network optimizations such as caching. In a previous work [14], we proposed PCC-DASH, a framework for 

streaming 6DoF scenes consisting of multiple point cloud objects. Point cloud compression is used to prepare multiple 

quality versions of the considered objects, and several rate adaptation heuristics are proposed which take into account 

the user’s position and viewing angle. However, the framework is not able to decode and render the content in real-
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time. 

 

Concerning live streaming, Dijkstra-Soudarissanane et al. propose a multi-view end-to-end system for real-time 

capture, transmission and rendering of volumetric media [15]. This system relies on a multi-point control unit (MCU), 

to shift processing from end devices into a server. Through a relevant demonstrator, the authors show that two end 

users can effectively communicate within an immersive world (see Figure 9). Similarly, Qian et al. propose Nebula, 

a volumetric video system that leverages edge computing to reduce computational efforts on the user’s device [16]. 

The setup uses regular pixel-based video encoding and decoding, in order to stream and render a single point cloud 

object at the client side. Both solutions show that offloading the decoding to the edge results in timely decoding of 

smaller point cloud objects, which is of major importance for future volumetric media applications. 

3. Challenges and Opportunities 

Early 6DoF solutions have shown promising results, but are limited in terms of interactivity and complexity. Below, 

we discuss different challenges that need to be addressed to fulfill the true potential of 6DoF video streaming. As 

shown in Figure 10, these challenges focus on i) content representation and encoding, ii) rate adaptation algorithms, 

iii) application layer protocols, iv) in-network optimizations and v) enhanced evaluation techniques. 

 

3.1. Content Representation and Encoding 

A key aspect in enabling 6DoF video streaming is the representation of the considered content. Since 2016, the MPEG 

project on “Coded representation of immersive media”, or MPEG-I, has taken on the challenge of enabling coding, 

transmission and presentation of immersive media [17]. Efforts have already resulted in the Omnidirectional MediA 

Format (OMAF), which is currently being extended to support interactivity and 3DoF+, to enable limited 

Figure 9. Experimental setup by Dijkstra-Soudarissanane et al. [15]. Two users are immersed in a virtual 

world, in which they can both see and hear one another in real-time. 

Figure 10. Challenges faced to enable 6DoF video streaming (adapted from [5]). 
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modifications of the viewing position. For 6DoF solutions, however, no new formats have been proposed at the time 

of writing. Therefore, traditional image- and volumetric media-based solutions are still widely adopted. 

As mentioned earlier, image-based solutions require a representation of images at every different angle and tilt. 

Feasible compression rates can be obtained through spatial reduction (i.e., reducing the resolution of each image) and 

angular reduction (i.e., reducing the number of images, mostly affecting users with high movement) [8]. Meanwhile, 

compression techniques for point clouds mostly include static kd-tree- and octree-based solutions, with notable 

examples including Google's Draco [18] and the work by Schnabel and Klein [19]. However, since MPEG launched 

its call for proposals in 2017 [20], alternative approaches have been suggested. Following an extensive evaluation of 

nine submitted proposals, MPEG selected a reference encoder for video-based point cloud compression (V-PCC) [10]. 

This encoder converts point clouds into two separate video sequences, which capture the geometry and texture 

information, and applies traditional video coding techniques to compress the data. However, this compression 

technique cannot be used to decode point cloud objects in real-time on commodity hardware [14]. 

Currently, most encoding techniques are based on compression standards for traditional images and video. Future 

research efforts should focus on media formats adapted to the considered use case, for instance through the application 

of sparse representations [21]. Furthermore, as illustrated by the work by Dijkstra-Soudarissanane et al. [15], 

offloading the decoding to edge nodes offers the advantage of timely decoding and sharing of resources. Ongoing 

efforts are needed to optimize this process, possibly combining it with in-network optimizations. 

3.2. Rate Adaptation Algorithms 

Similar to traditional video streaming, rate adaptation is an important factor when enabling 6DoF video streaming 

over the best-effort Internet. Its complexity, however, is significantly higher. Rate adaptation algorithms need to take 

into account both content characteristics and network throughput and latency, as well as the user’s movement and 

viewing angle. In this regard, culling the considered objects (i.e., reducing the amount of content based on what regions 

of the video the user can observe [22]) is a well-known method to reduce bandwidth requirements. 

Recently, a number of rate adaptation heuristics have been proposed. Qian et al. present two rate adaptation 

mechanisms for Nebula [16], while Hosseini presents a rate adaptation heuristic for multiple point cloud objects [23]. 

However, they did not carry out an evaluation and no results on the video quality are reported. Park et al. propose 

a utility-based rate adaptation heuristic for volumetric media, which is both throughput- and buffer-aware [24]. The 

heuristic was evaluated using simulation, reporting considered utility metric values of each object rather than the 

resulting visual quality. In our previous work, we propose several rate adaptation heuristics for multi-object point 

cloud scenes, which consider the user’s position and viewing angle within the scene [14]. Results are encouraging, 

but indicate that the performance of the heuristics strongly depends on the considered video and camera path. 

The above heuristics are typically evaluated using fixed user trajectories. This is an idealized scenario, since the client 

can adapt the quality of the content based on perfect knowledge. Ongoing research will rather have to focus on 

predicting the user’s position and viewing direction, based on the user’s (recent) history, video saliency and content. 

Similar techniques for 360° video already exist [3], but have to be improved to deal with additional complexity. 

3.3. Application Layer Optimizations 

Nowadays, most HAS solutions use HTTP/1.1 over TCP to retrieve the required resources through request-response 

transactions, buffering fetched video segments and playing them out in linear order. One possibility to speed up TCP-

based solutions is to develop smarter retransmission schemes. In 6DoF video streaming, retransmission is required 

when transmitting or updating the manifest file or other data crucial for rendering virtual views. However, when less 

important data is sent (e.g., incremental data or less important frames), the loss may be acceptable. The transport layer 

needs to handle these different scenarios and decide what to do for each packet, stream or flow. 

Some solutions revert to UDP, in order to improve latency at the cost of reliability. One example is the HTTP/3 

protocol, which will soon be standardized by the Internet Engineering Task Force (IETF) [25]. This protocol is based 

on the QUIC protocol, proposed by Google in 2012 [26]. HTTP/3 establishes a number of multiplexed UDP 

connections, resulting in independent delivery of multiple streams of data. In contrast to HTTP/2, which uses a single 

TCP connection, this approach avoids head-of-line-blocking if any of the TCP packets are delayed or lost. Another 

example is WebRTC, a real-time communication protocol which has shown positive results for traditional video in 

the recent past [27]. WebRTC is, however, peer-to-peer in nature and thus requires multiple encoders at different 
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qualities for each peering connection to ensure an adaptive streaming solution, which hampers scalability. Existing 

research on dynamically recomputing encoding settings is very limited and immersive scenarios (with three, let alone 

six degrees of freedom) have not yet been studied at all. 

3.4. In-Network Optimizations 

Although various optimizations on higher layers provide support in managing high-bandwidth and low-latency 

requirements, networks still have a substantial role to play in the end-to-end streaming of 6DoF content. With the 

advent of multi-camera systems, the computational complexity of tasks such as encoding and rendering increased 

exponentially, making it difficult to implement them on the end-user equipment. Such tasks can be migrated to 

resourceful cloud/fog servers on the network. For this reason, networks should be more than just transport circuits. 

To support efficient delivery of immersive media services, networks require more programmability. This can be 

achieved by three evolving technologies: i) Software-Defined Networks (SDN), ii) Network Function Virtualization 

(NFV) and iii) Multi-access Edge Computing (MEC). The SDN paradigm offers flexibility to the networks in the form 

of programmable network management, easy reconfiguration and on-demand resource allocation. It suffers, however, 

from issues such as scalability, control plane overhead and Denial of Service (DoS) attacks. Such shortcomings are to 

be addressed in order to support 6DoF content streaming. NFV allows the network functions to be deployed as 

virtualized software entities running on commodity hardware [28]. Various services involved in 6DoF video streaming 

can be mapped to respective network functions and can be deployed as a service function chain (SFC). The SFC can 

be distributed to different locations in accordance to various requirements such as hardware capacity, bandwidth, 

distance, latency, reliability and their respective tradeoffs [28] [29]. As an example, tasks such as view-synthesis can 

be offloaded from the end-user equipment but should be placed closer to the user in order to lower the latency. This 

can be achieved by MEC, which enables the devices to access cloud/fog resources in an on-demand fashion [29]. 

Since 6DoF video streaming depends on diverse factors, the function placement should be treated as multi-objective 

optimization problem that has not been extensively researched yet. In addition, there is a need for novel and proactive 

resource management mechanisms for better resource utilization. 

The success of content delivery networks increased the prominence of strategic content caching at the edge. Such 

storage will play an important role in 6DoF content streaming; upon a new task request the server/network needs to 

swiftly decide if it should store the content for future requests or not. Furthermore, cache placement and distribution 

is an important research direction. Proactive caching strategies need to evolve, however, as they depend on spatio-

temporal traffic predictions, the users’ location, mobility, etc. Other network level approaches such as network coding 

[30] and network slicing [28] can be exploited to meet the requirements of 6DoF video streaming. 

3.5. Evaluation Metrics 

The perceived quality of 6DoF video depends on many parameters, such as the frame rate and the degree resolution. 

Therefore, understanding the effects and “sweet spots” of each of the parameters on the user perception is fundamental 

to help improve the bandwidth consumption while maintaining the user’s QoE [5]. Given the subjective essence of 

the user’s experience, in the last years several works have appeared that subjectively assess the QoE of holographic 

media. Such are the cases of Kara et al. for adaptive streaming of light field video [8] and of Javaheri et al. [31] for 

point cloud streaming. However, coping with the dynamics of 6DoF video streaming will require real-time 

measurements of how the user perceives the streaming. In such cases, objective metrics are better suited for the 

assessment [31].  For this reason, current effort goes in the direction of devising objective metrics for holographic 

media correlating with the user’s QoE. One first step has been to adapt objective metrics traditionally used for two-

dimensional videos for virtual reality and 6DoF video content. Variants derived from the mean square error (MSE) 

and the peak signal-to-noise ratio (PSNR) have shown good correlation both for point cloud [31] and light field video 

[32]. Despite the promising results, these studies have focused mainly on encoding derived artifacts. Thus, their 

accuracy to assess the effects of end-to-end system (capturing, encoding and streaming) degradation is still unknown. 

Furthermore, most of the current studies (both objective and subjective) assume the user to be passive, thus the effects 

of the interactivity with the holographic content are not taken into account. This will be a fundamental subject of 

research for future 6DoF applications. 

4. Conclusions 

This letter presented a brief overview of ongoing research efforts to realize virtual reality video streaming with six 
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degrees of freedom. Both image- and volumetric media-based representation techniques were discussed, and a list of 

challenges and opportunities for future work was presented. Given the many applications of virtual reality and an 

increased interest from both service and content providers, the topic is expected to remain an open field for research 

and innovation for many years to come. 
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